Sustainable Gold Catalysis in Water Using Cyclodextrin‐tagged NHC‐Gold Complexes

The synthesis of 10 water‐soluble β‐cyclodextrin‐tagged NHC‐gold(I) complexes is described. Key steps are nucleophilic substitutions, as well as, copper‐(CuAAC)‐ and ruthenium‐(RuAAC)‐catalyzed azide alkyne cycloadditions. Whereas the CuAAC reliably affords 1,4‐disubstituted 1,2,3‐triazoles, the regioselectivity of the RuAAC depends on the structure of the coupling partners. Permethylated cyclodextrin‐tagged NHC‐gold(I) complexes are soluble both in water and in organic solvents. They show excellent catalytic activity and recyclability in cyclization reactions of functionalized allenes and alkynes in bulk water. The enantioselective cycloisomerization of γ‐ and δ‐hydroxyallenes could be achieved with up to 38 % ee. Thus, it is possible to take advantage of the chirality of the cyclodextrin moiety for enantioselective gold‐catalyzed transformations.

[1]  J. Borge,et al.  Water-Soluble Gold(I) and Gold(III) Complexes with Sulfonated N-Heterocyclic Carbene Ligands: Synthesis, Characterization, and Application in the Catalytic Cycloisomerization of γ-Alkynoic Acids into Enol-Lactones , 2013 .

[2]  Luke G Green,et al.  A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. , 2002, Angewandte Chemie.

[3]  F. Gallou,et al.  Evolution of Solvents in Organic Chemistry , 2016 .

[4]  W. Woggon,et al.  Enantioselective Reduction of Aromatic and Aliphatic Ketones Catalyzed by Ruthenium Complexes Attached to β‐Cyclodextrin. , 2005 .

[5]  Daniel J. Lippincott,et al.  Leveraging the micellar effect: gold-catalyzed dehydrative cyclizations in water at room temperature. , 2014, Organic letters.

[6]  C. Amatore,et al.  NHC-capped cyclodextrins (ICyDs): insulated metal complexes, commutable multicoordination sphere, and cavity-dependent catalysis. , 2013, Angewandte Chemie.

[7]  W. Herrmann,et al.  Water‐Soluble Ligands, Metal Complexes, and Catalysts: Synergism of Homogeneous and Heterogeneous Catalysis , 1993 .

[8]  A. Slawin,et al.  Straightforward synthesis of [Au(NHC)X] (NHC = N-heterocyclic carbene, X = Cl, Br, I) complexes. , 2013, Chemical communications.

[9]  N. Krause,et al.  Smaller, faster, better: modular synthesis of unsymmetrical ammonium salt-tagged NHC-gold(I) complexes and their application as recyclable catalysts in water. , 2015, Organic & biomolecular chemistry.

[10]  N. Krause,et al.  Sustainable Micellar Gold Catalysis – Poly(2-oxazolines) as Versatile Amphiphiles , 2016 .

[11]  Morten Meldal,et al.  Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. , 2002, The Journal of organic chemistry.

[12]  C. Winter,et al.  Gold-catalyzed nucleophilic cyclization of functionalized allenes: a powerful access to carbo- and heterocycles. , 2011, Chemical reviews.

[13]  N. Krause,et al.  Synthesis and properties of a biotin-tagged NHC–gold complex , 2015 .

[14]  J. Szejtli,et al.  Past, present and futute of cyclodextrin research , 2004 .

[15]  Sathya Srinivasachari,et al.  Versatile supramolecular pDNA vehicles via "click polymerization" of beta-cyclodextrin with oligoethyleneamines. , 2009, Biomaterials.

[16]  G. Strukul,et al.  Recent advances in catalysis in micellar media , 2015 .

[17]  Dennis P Curran,et al.  New fluorous/organic biphasic systems achieved by solvent tuning. , 2007, Tetrahedron.

[18]  M. Maier,et al.  Explanation of Counterion Effects in Gold(I)-Catalyzed Hydroalkoxylation of Alkynes , 2014 .

[19]  Stuart J. Williams,et al.  Stable carbenes as strong bases , 1995 .

[20]  Günter Szeimies,et al.  1.3‐Dipolare Cycloadditionen, XXIII. Einige Beobachtungen zur Addition organischer Azide an CC‐Dreifachbindungen , 1965 .

[21]  Dariusz Matosiuk,et al.  Click chemistry for drug development and diverse chemical-biology applications. , 2013, Chemical reviews.

[22]  F. Hirayama,et al.  Cyclodextrin Drug Carrier Systems. , 1998, Chemical reviews.

[23]  Fritz E. Kühn,et al.  Synthese und Anwendung wasserlöslicher NHC‐Übergangsmetall‐Komplexe , 2013 .

[24]  Wenlong Wang,et al.  Reusable ammonium salt-tagged NHC–Cu(I) complexes: preparation and catalytic application in the three component click reaction , 2011 .

[25]  Morten Meldal,et al.  Cu-catalyzed azide-alkyne cycloaddition. , 2008, Chemical reviews.

[26]  S. Menuel,et al.  Click chemistry as an efficient tool to access β-cyclodextrin dimers , 2008 .

[27]  J. Djukic,et al.  Benzimidazolium- and Benzimidazolilydene-Capped Cyclodextrins: New Perspectives in Anion Encapsulation and Gold-Catalyzed Cycloisomerization of 1,6-Enynes. , 2018, Chemistry.

[28]  J. Djukic,et al.  A Comparative Study of Confining Ligands Derived from Methylated Cyclodextrins in Gold-Catalyzed Cycloisomerization of 1,6-Enynes , 2019, European Journal of Organic Chemistry.

[29]  S. Ng,et al.  Click chemistry for facile immobilization of cyclodextrin derivatives onto silica as chiral stationary phases , 2008 .

[30]  Paul Anastas,et al.  Green chemistry: principles and practice. , 2010, Chemical Society reviews.

[31]  N. Krause New surfactants for chemistry in water , 2017 .

[32]  Ian D. Williams,et al.  Ruthenium-catalyzed cycloaddition of alkynes and organic azides. , 2006, Journal of the American Chemical Society.

[33]  G. Hammond,et al.  Improving Homogeneous Cationic Gold Catalysis through a Mechanism-Based Approach. , 2019, Accounts of chemical research.

[34]  W. Herrmann,et al.  Synthesis and application of water-soluble NHC transition-metal complexes. , 2013, Angewandte Chemie.

[35]  T. Beke-Somfai,et al.  Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications. , 2016, Chemical reviews.

[36]  Diego A. Alonso,et al.  Deep Eutectic Solvents: The Organic Reaction Medium of the Century , 2016 .

[37]  W. Woggon,et al.  Enantioselective reduction of aromatic and aliphatic ketones catalyzed by ruthenium complexes attached to beta-cyclodextrin. , 2004, Angewandte Chemie.

[38]  S. Conejero,et al.  Cycloisomerization versus hydration reactions in aqueous media: a Au(III)-NHC catalyst that makes the difference. , 2012, Organic letters.

[39]  J. Szejtli Introduction and General Overview of Cyclodextrin Chemistry. , 1998, Chemical reviews.

[40]  Xingbo Liu,et al.  "Silver effect" in gold(I) catalysis: an overlooked important factor. , 2012, Journal of the American Chemical Society.

[41]  J. Lewiński,et al.  Interactions of Native Cyclodextrins with Metal Ions and Inorganic Nanoparticles: Fertile Landscape for Chemistry and Materials Science. , 2017, Chemical reviews.

[42]  R. Sheldon Green solvents for sustainable organic synthesis: state of the art , 2005 .

[43]  R. Widenhoefer,et al.  Gold(I)-catalyzed intramolecular enantioselective hydroalkoxylation of allenes. , 2007, Angewandte Chemie.

[44]  S. Mohamad,et al.  Synthesis and Characterization of β-Cyclodextrin Functionalized Ionic Liquid Polymer as a Macroporous Material for the Removal of Phenols and As(V) , 2013, International journal of molecular sciences.

[45]  K. Sharpless,et al.  Polytriazoles as copper(I)-stabilizing ligands in catalysis. , 2004, Organic letters.

[46]  B. Lipshutz,et al.  Transitioning organic synthesis from organic solvents to water. What's your E Factor? , 2014, Green chemistry : an international journal and green chemistry resource : GC.

[47]  K. Sharpless,et al.  Click-Chemie: diverse chemische Funktionalität mit einer Handvoll guter Reaktionen , 2001 .

[48]  D. Astruc,et al.  The copper(I)-catalyzed alkyne-azide cycloaddition (CuAAC) “click” reaction and its applications. An overview , 2011 .

[49]  N. Krause,et al.  Ammonium‐Salt‐Tagged IMesAuCl Complexes and Their Application in Gold‐Catalyzed Cycloisomerization Reactions in Water , 2015 .

[50]  G. L. Hamilton,et al.  A Powerful Chiral Counterion Strategy for Asymmetric Transition Metal Catalysis , 2007, Science.