The Computational Complexity of the Restricted Isometry Property, the Nullspace Property, and Related Concepts in Compressed Sensing
暂无分享,去创建一个
[1] Marc Teboulle,et al. Conditional Gradient Algorithmsfor Rank-One Matrix Approximations with a Sparsity Constraint , 2011, SIAM Rev..
[2] M. A. Iwen. Simple deterministically constructible RIP matrices with sublinear fourier sampling requirements , 2009, 2009 43rd Annual Conference on Information Sciences and Systems.
[3] João Filipe Queiró,et al. On the interlacing property for singular values and eigenvalues , 1987 .
[4] Xiaoming Huo,et al. Uncertainty principles and ideal atomic decomposition , 2001, IEEE Trans. Inf. Theory.
[5] Michael Elad,et al. Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .
[6] S. T. McCormick,et al. A combinatorial approach to some sparse matrix problems , 1983 .
[7] S. De Marchi,et al. Generalized Vandermonde determinants, Toeplitz matrices and Schur functions , 1999 .
[8] T. Coleman,et al. The null space problem I. complexity , 1986 .
[9] Pascal Koiran,et al. Hidden Cliques and the Certification of the Restricted Isometry Property , 2012, IEEE Transactions on Information Theory.
[10] Willem H. Haemers,et al. Spectra of Graphs , 2011 .
[11] Holly P. Hirst,et al. Bounding the Roots of Polynomials , 1997 .
[12] C. V. Nuffelen. On the incidence matrix of a graph , 1976 .
[13] Lie Wang,et al. New Bounds for Restricted Isometry Constants , 2009, IEEE Transactions on Information Theory.
[14] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[15] R. DeVore,et al. Compressed sensing and best k-term approximation , 2008 .
[16] Ronald A. DeVore,et al. Deterministic constructions of compressed sensing matrices , 2007, J. Complex..
[17] Rémi Gribonval,et al. Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.
[18] Weiyu Xu,et al. Precisely Verifying the Null Space Conditions in Compressed Sensing: A Sandwiching Algorithm , 2013, ArXiv.
[19] R. DeVore,et al. A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .
[20] Pascal Koiran,et al. On the Certification of the Restricted Isometry Property , 2011, ArXiv.
[21] Emmanuel J. Candès,et al. Decoding by linear programming , 2005, IEEE Transactions on Information Theory.
[22] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[23] Hans Peter Schlickewei,et al. Generalized Vandermonde determinants , 2000 .
[24] P. Rigollet,et al. Optimal detection of sparse principal components in high dimension , 2012, 1202.5070.
[25] Jeffrey D. Blanchard,et al. COMPRESSED SENSING : HOW SHARP IS THE RIP ? , 2009 .
[26] Dustin G. Mixon,et al. Certifying the Restricted Isometry Property is Hard , 2012, IEEE Transactions on Information Theory.
[27] Jens Vygen,et al. The Book Review Column1 , 2020, SIGACT News.
[28] Alexander Vardy,et al. The intractability of computing the minimum distance of a code , 1997, IEEE Trans. Inf. Theory.
[29] Alon Itai,et al. Finding a Minimum Circuit in a Graph , 1978, SIAM J. Comput..
[30] Michael B. Wakin,et al. Analysis of Orthogonal Matching Pursuit Using the Restricted Isometry Property , 2009, IEEE Transactions on Information Theory.
[31] E. Heineman. Generalized Vandermonde determinants , 1929 .
[32] Bernhard Korte,et al. Combinatorial Optimization , 1992, NATO ASI Series.
[33] S. Frick,et al. Compressed Sensing , 2014, Computer Vision, A Reference Guide.
[34] Stephen J. Dilworth,et al. Explicit constructions of RIP matrices and related problems , 2010, ArXiv.
[35] Shmuel Friedland. Bounds on the spectral radius of graphs with e edges , 1988 .
[36] Massimo Fornasier,et al. Compressive Sensing , 2015, Handbook of Mathematical Methods in Imaging.
[37] Richard M. Karp,et al. Reducibility among combinatorial problems" in complexity of computer computations , 1972 .
[38] Arkadi Nemirovski,et al. On verifiable sufficient conditions for sparse signal recovery via ℓ1 minimization , 2008, Math. Program..
[39] Dominic Welsh,et al. On the Vector Representation of Matroids , 1970 .
[40] Rémi Gribonval,et al. Restricted Isometry Constants Where $\ell ^{p}$ Sparse Recovery Can Fail for $0≪ p \leq 1$ , 2009, IEEE Transactions on Information Theory.
[41] S. Foucart,et al. Sparsest solutions of underdetermined linear systems via ℓq-minimization for 0 , 2009 .
[42] Leonid Khachiyan,et al. On the Complexity of Approximating Extremal Determinants in Matrices , 1995, J. Complex..
[43] Jared Tanner,et al. Explorer Compressed Sensing : How Sharp Is the Restricted Isometry Property ? , 2011 .
[44] Alexandre d'Aspremont,et al. Testing the nullspace property using semidefinite programming , 2008, Math. Program..
[45] Joel A. Tropp,et al. Greed is good: algorithmic results for sparse approximation , 2004, IEEE Transactions on Information Theory.
[46] Yin Zhang,et al. Theory of Compressive Sensing via ℓ1-Minimization: a Non-RIP Analysis and Extensions , 2013 .
[47] Balas K. Natarajan,et al. Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..
[48] Philippe Rigollet,et al. Computational Lower Bounds for Sparse PCA , 2013, ArXiv.
[49] Leonid Gurvits,et al. Vandermonde Matrices, NP-Completeness, and Transversal Subspaces , 2003, Found. Comput. Math..
[50] Richard M. Karp,et al. Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.
[51] Elwyn R. Berlekamp,et al. On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.
[52] Edoardo Amaldi,et al. On the Approximability of Minimizing Nonzero Variables or Unsatisfied Relations in Linear Systems , 1998, Theor. Comput. Sci..
[53] Michael I. Jordan,et al. A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..
[54] Michael Elad,et al. Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.
[55] Dustin G. Mixon,et al. Full Spark Frames , 2011, 1110.3548.
[56] J. G. Pierce,et al. Geometric Algorithms and Combinatorial Optimization , 2016 .
[57] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[58] Edoardo Amaldi,et al. The Complexity and Approximability of Finding Maximum Feasible Subsystems of Linear Relations , 1995, Theor. Comput. Sci..
[59] Otmar Scherzer,et al. Handbook of Mathematical Methods in Imaging , 2015, Handbook of Mathematical Methods in Imaging.
[60] E. Candès. The restricted isometry property and its implications for compressed sensing , 2008 .
[61] Alon Itai,et al. Finding a minimum circuit in a graph , 1977, STOC '77.
[62] Jared Tanner,et al. Improved Bounds on Restricted Isometry Constants for Gaussian Matrices , 2010, SIAM J. Matrix Anal. Appl..
[63] Davies Rémi Gribonval. Restricted Isometry Constants Where Lp Sparse Recovery Can Fail for 0 , 2008 .
[64] Alexandre d'Aspremont,et al. Optimal Solutions for Sparse Principal Component Analysis , 2007, J. Mach. Learn. Res..
[65] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[66] Philip E. Gill,et al. Numerical Linear Algebra and Optimization , 1991 .
[67] Yoram Bresler,et al. Computing performance guarantees for compressed sensing , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.
[68] Michael Elad,et al. From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..