Modeling formalisms in Systems Biology

Systems Biology has taken advantage of computational tools and high-throughput experimental data to model several biological processes. These include signaling, gene regulatory, and metabolic networks. However, most of these models are specific to each kind of network. Their interconnection demands a whole-cell modeling framework for a complete understanding of cellular systems. We describe the features required by an integrated framework for modeling, analyzing and simulating biological processes, and review several modeling formalisms that have been used in Systems Biology including Boolean networks, Bayesian networks, Petri nets, process algebras, constraint-based models, differential equations, rule-based models, interacting state machines, cellular automata, and agent-based models. We compare the features provided by different formalisms, and discuss recent approaches in the integration of these formalisms, as well as possible directions for the future.

[1]  Jeremy S. Edwards,et al.  Coupled Stochastic Spatial and Non-Spatial Simulations of ErbB1 Signaling Pathways Demonstrate the Importance of Spatial Organization in Signal Transduction , 2009, PloS one.

[2]  G. Church,et al.  Analysis of optimality in natural and perturbed metabolic networks , 2002 .

[3]  William S. Hlavacek,et al.  Simulation of large-scale rule-based models , 2009, Bioinform..

[4]  R. Albert,et al.  Discrete dynamic modeling of cellular signaling networks. , 2009, Methods in enzymology.

[5]  T. Jaakkola,et al.  Bayesian Network Approach to Cell Signaling Pathway Modeling , 2002, Science's STKE.

[6]  Luca Cardelli,et al.  Brane Calculi , 2004, CMSB.

[7]  Monika Heiner,et al.  Application of Petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber , 2005, Bioinform..

[8]  G. T. Tsao,et al.  A cybernetic view of microbial growth: Modeling of cells as optimal strategists , 1985, Biotechnology and bioengineering.

[9]  Onami,et al.  Bio-calculus: Its Concept and Molecular Interaction. , 1999, Genome informatics. Workshop on Genome Informatics.

[10]  Glen E. P. Ropella,et al.  Essential operating principles for tumor spheroid growth , 2008, BMC Systems Biology.

[11]  Satoru Miyano,et al.  Inferring gene networks from time series microarray data using dynamic Bayesian networks , 2003, Briefings Bioinform..

[12]  Eugénio C. Ferreira,et al.  Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis-Menten and approximate kinetic equations , 2010, Biosyst..

[13]  J. Vohradský Neural network model of gene expression , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[14]  A. Hasman,et al.  Probabilistic reasoning in intelligent systems: Networks of plausible inference , 1991 .

[15]  Peter K. Sorger,et al.  Logic-Based Models for the Analysis of Cell Signaling Networks† , 2010, Biochemistry.

[16]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[17]  Hitoshi Iba,et al.  Inference of differential equation models by genetic programming , 2002, Inf. Sci..

[18]  J. Heijnen Approximative kinetic formats used in metabolic network modeling , 2005, Biotechnology and bioengineering.

[19]  Jörg R. Weimar Cellular Automata Approaches to Enzymatic Reaction Networks , 2002, ACRI.

[20]  Erwin P. Gianchandani,et al.  Dynamic Analysis of Integrated Signaling, Metabolic, and Regulatory Networks , 2008, PLoS Comput. Biol..

[21]  D. Broomhead,et al.  Something from nothing − bridging the gap between constraint‐based and kinetic modelling , 2007, The FEBS journal.

[22]  G. T. Tsao,et al.  Cybernetic modeling of microbial growth on multiple substrates , 1984, Biotechnology and bioengineering.

[23]  T. Deisboeck,et al.  Development of a three-dimensional multiscale agent-based tumor model: simulating gene-protein interaction profiles, cell phenotypes and multicellular patterns in brain cancer. , 2006, Journal of theoretical biology.

[24]  Eberhard O. Voit,et al.  Hybrid Modeling in Biochemical Systems Theory by Means of Functional Petri Nets , 2009, J. Bioinform. Comput. Biol..

[25]  Alvis Brazma,et al.  Current approaches to gene regulatory network modelling , 2007, BMC Bioinformatics.

[26]  S. Brahmachari,et al.  Boolean network analysis of a neurotransmitter signaling pathway. , 2007, Journal of theoretical biology.

[27]  Jason A. Papin,et al.  Genome-scale microbial in silico models: the constraints-based approach. , 2003, Trends in biotechnology.

[28]  H. D. Jong,et al.  Qualitative simulation of genetic regulatory networks using piecewise-linear models , 2004, Bulletin of mathematical biology.

[29]  Katherine C. Chen,et al.  Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. , 2003, Current opinion in cell biology.

[30]  Kim G. Larsen,et al.  On Modal Refinement and Consistency , 2007, CONCUR.

[31]  C. Chassagnole,et al.  Dynamic modeling of the central carbon metabolism of Escherichia coli. , 2002, Biotechnology and bioengineering.

[32]  W. Wiechert 13C metabolic flux analysis. , 2001, Metabolic engineering.

[33]  Bernhard O. Palsson,et al.  Matrix Formalism to Describe Functional States of Transcriptional Regulatory Systems , 2006, PLoS Comput. Biol..

[34]  Steffen Klamt,et al.  A Logical Model Provides Insights into T Cell Receptor Signaling , 2007, PLoS Comput. Biol..

[35]  A. Burgard,et al.  Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization , 2003, Biotechnology and bioengineering.

[36]  Jose L. Segovia-Juarez,et al.  Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model. , 2004, Journal of theoretical biology.

[37]  Satoru Miyano,et al.  Identification of Genetic Networks from a Small Number of Gene Expression Patterns Under the Boolean Network Model , 1998, Pacific Symposium on Biocomputing.

[38]  T. Henzinger,et al.  Executable cell biology , 2007, Nature Biotechnology.

[39]  D. Fell,et al.  Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. , 1999, Trends in biotechnology.

[40]  Mathias John,et al.  A Spatial Extension to the π Calculus , 2007 .

[41]  D. Kaiser,et al.  A three-dimensional model of myxobacterial aggregation by contact-mediated interactions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Michael L. Mavrovouniotis,et al.  Petri Net Representations in Metabolic Pathways , 1993, ISMB.

[43]  Jason A. Papin,et al.  Reconstruction of cellular signalling networks and analysis of their properties , 2005, Nature Reviews Molecular Cell Biology.

[44]  Gheorghe Paun,et al.  Computing with Membranes , 2000, J. Comput. Syst. Sci..

[45]  Corrado Priami,et al.  Beta Binders for Biological Interactions , 2004, CMSB.

[46]  Shayn M. Peirce,et al.  Combining experiments with multi-cell agent-based modeling to study biological tissue patterning , 2007, Briefings Bioinform..

[47]  Monika Heiner,et al.  Application of Petri net based analysis techniques to signal transduction pathways , 2006, BMC Bioinformatics.

[48]  Peter Tang,et al.  Dynamic cellular automata: an alternative approach to cellular simulation. , 2005, In silico biology.

[49]  Radu Mateescu,et al.  Validation of qualitative models of genetic regulatory networks by model checking: analysis of the nutritional stress response in Escherichia coli , 2005, ISMB.

[50]  J. Heijnen,et al.  Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics. , 2003, Metabolic engineering.

[51]  C. Tomlin,et al.  Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modelling: Delta-Notch protein signalling. , 2004, Systems biology.

[52]  Dipak Barua,et al.  Computational Models of Tandem Src Homology 2 Domain Interactions and Application to Phosphoinositide 3-Kinase* , 2008, Journal of Biological Chemistry.

[53]  Gary An,et al.  A model of TLR4 signaling and tolerance using a qualitative, particle-event-based method: introduction of spatially configured stochastic reaction chambers (SCSRC). , 2009, Mathematical biosciences.

[54]  Thomas Pfeiffer,et al.  Exploring the pathway structure of metabolism: decomposition into subnetworks and application to Mycoplasma pneumoniae , 2002, Bioinform..

[55]  Jens Nielsen,et al.  Evolutionary programming as a platform for in silico metabolic engineering , 2005, BMC Bioinformatics.

[56]  Thomas Lengauer,et al.  Pathway analysis in metabolic databases via differetial metabolic display (DMD) , 2000, German Conference on Bioinformatics.

[57]  James R Faeder,et al.  The complexity of complexes in signal transduction , 2003, Biotechnology and bioengineering.

[58]  Michael J. North,et al.  AgentCell: a digital single-cell assay for bacterial chemotaxis , 2005, Bioinform..

[59]  Sarala M. Wimalaratne,et al.  The Systems Biology Graphical Notation , 2009, Nature Biotechnology.

[60]  Dirk Husmeier,et al.  Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks , 2003, Bioinform..

[61]  Gilles Clermont,et al.  A Patient-Specific in silico Model of Inflammation and Healing Tested in Acute Vocal Fold Injury , 2008, PloS one.

[62]  Yuh-Jyh Hu,et al.  Extracting the abstraction pyramid from complex networks , 2010, BMC Bioinformatics.

[63]  Michael Hucka,et al.  The Systems Biology Markup Language (SBML): Language Specification for Level 3 Version 1 Core , 2010 .

[64]  E. Voit,et al.  Recasting nonlinear differential equations as S-systems: a canonical nonlinear form , 1987 .

[65]  Ting Chen,et al.  Modeling Gene Expression with Differential Equations , 1998, Pacific Symposium on Biocomputing.

[66]  S. Gilmore,et al.  Automatically deriving ODEs from process algebra models of signalling pathways , 2005 .

[67]  R. Jackson,et al.  General mass action kinetics , 1972 .

[68]  E. Klipp,et al.  Bringing metabolic networks to life: convenience rate law and thermodynamic constraints , 2006, Theoretical Biology and Medical Modelling.

[69]  Steffen Klamt,et al.  Transforming Boolean models to continuous models: methodology and application to T-cell receptor signaling , 2009, BMC Systems Biology.

[70]  David S Wishart,et al.  Computational systems biology in drug discovery and development: methods and applications. , 2007, Drug discovery today.

[71]  Li Chen,et al.  Modelling and simulation of signal transductions in an apoptosis pathway by using timed Petri nets , 2007, Journal of Biosciences.

[72]  Bernhard O. Palsson,et al.  Functional States of the Genome-Scale Escherichia Coli Transcriptional Regulatory System , 2009, PLoS Comput. Biol..

[73]  Neema Jamshidi,et al.  Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models. , 2010, Biophysical journal.

[74]  B. Palsson,et al.  Metabolic Flux Balancing: Basic Concepts, Scientific and Practical Use , 1994, Bio/Technology.

[75]  KonagayaAkihiko,et al.  Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm , 2005 .

[76]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[77]  David Harel,et al.  Statecharts: A Visual Formalism for Complex Systems , 1987, Sci. Comput. Program..

[78]  Kevin Burrage,et al.  Stochastic approaches for modelling in vivo reactions , 2004, Comput. Biol. Chem..

[79]  Matthias Reuss,et al.  Agent-based simulation of reactions in the crowded and structured intracellular environment: Influence of mobility and location of the reactants , 2011, BMC Systems Biology.

[80]  Mario J. Pérez-Jiménez,et al.  P Systems, a New Computational Modelling Tool for Systems Biology , 2006, Trans. Comp. Sys. Biology.

[81]  François Fages,et al.  BIOCHAM: an environment for modeling biological systems and formalizing experimental knowledge , 2006, Bioinform..

[82]  Jane Hillston,et al.  Bio-PEPA: A framework for the modelling and analysis of biological systems , 2009, Theor. Comput. Sci..

[83]  Dawn C. Walker,et al.  The virtual cell - a candidate co-ordinator for 'middle-out' modelling of biological systems , 2009, Briefings Bioinform..

[84]  Mike Holcombe,et al.  Formal agent-based modelling of intracellular chemical interactions. , 2006, Bio Systems.

[85]  T. Marshall,et al.  Common angiotensin receptor blockers may directly modulate the immune system via VDR, PPAR and CCR2b , 2006, Theoretical Biology and Medical Modelling.

[86]  Stefan Schuster,et al.  Topological analysis of metabolic networks based on Petri net theory , 2003, Silico Biol..

[87]  Cosimo Laneve,et al.  Formal molecular biology , 2004, Theor. Comput. Sci..

[88]  R. M. Zorzenon dos Santos,et al.  Dynamics of HIV infection: a cellular automata approach. , 2001, Physical review letters.

[89]  P. S. Thiagarajan,et al.  Petri Nets and Other Models of Concurrency - ICATPN 2006, 27th International Conference on Applications and Theory of Petri Nets and Other Models of Concurrency, Turku, Finland, June 26-30, 2006, Proceedings , 2006, ICATPN.

[90]  Pierre N. Robillard,et al.  Petri net-based method for the analysis of the dynamics of signal propagation in signaling pathways , 2008, Bioinform..

[91]  Q. Ouyang,et al.  The yeast cell-cycle network is robustly designed. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[92]  Patrik D'haeseleer,et al.  Genetic network inference: from co-expression clustering to reverse engineering , 2000, Bioinform..

[93]  Peter Dittrich,et al.  Chemical Organisation Theory , 2007, Bulletin of mathematical biology.

[94]  W. S. Hlavacek,et al.  A network model of early events in epidermal growth factor receptor signaling that accounts for combinatorial complexity. , 2006, Bio Systems.

[95]  Goldenfeld,et al.  Simple lessons from complexity , 1999, Science.

[96]  Eberhard O. Voit,et al.  Integrative biological systems modeling: challenges and opportunities , 2009, Frontiers of Computer Science in China.

[97]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[98]  Fidel Ramírez,et al.  Computing topological parameters of biological networks , 2008, Bioinform..

[99]  Monika Heiner,et al.  From Petri Nets to Differential Equations - An Integrative Approach for Biochemical Network Analysis , 2006, ICATPN.

[100]  Yun Soo Bae,et al.  Cellular Signal Transduction , 2001 .

[101]  Shuhei Kimura,et al.  Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm , 2005, Bioinform..

[102]  Luca Cardelli,et al.  BioAmbients: an abstraction for biological compartments , 2004, Theor. Comput. Sci..

[103]  Yukiko Matsuoka,et al.  Using process diagrams for the graphical representation of biological networks , 2005, Nature Biotechnology.

[104]  Christoph Kaleta,et al.  Using chemical organization theory for model checking , 2009, Bioinform..

[105]  Thomas A. Henzinger,et al.  Predictive Modeling of Signaling Crosstalk during C. elegans Vulval Development , 2007, PLoS Comput. Biol..

[106]  Vincent Danos,et al.  Formal Molecular Biology Done in CCS-R , 2007, Electron. Notes Theor. Comput. Sci..

[107]  Denis Thieffry,et al.  Petri net modelling of biological regulatory networks , 2008, J. Discrete Algorithms.

[108]  B. Palsson,et al.  Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. , 2000, Journal of theoretical biology.

[109]  E. Ruppin,et al.  Regulatory on/off minimization of metabolic flux changes after genetic perturbations. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[110]  B. Palsson Systems Biology: Properties of Reconstructed Networks , 2006 .

[111]  Vincent Frouin,et al.  Evolutionary approaches for the reverse-engineering of gene regulatory networks: A study on a biologically realistic dataset , 2008, BMC Bioinformatics.

[112]  Michael Luck,et al.  Agents in bioinformatics, computational and systems biology , 2006, Briefings Bioinform..

[113]  Jesper Tegnér,et al.  Growing Bayesian network models of gene networks from seed genes , 2005, ECCB/JBI.

[114]  L. Wackett An annotated selection of World Wide Web sites relevant to the topics in Microbial Biotechnology , 2013, Microbial biotechnology.

[115]  Min Zou,et al.  A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data , 2005, Bioinform..

[116]  B. Palsson,et al.  Thirteen Years of Building Constraint-Based In Silico Models of Escherichia coli , 2003, Journal of bacteriology.

[117]  K. Sachs,et al.  Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data , 2005, Science.

[118]  Reinhard Schneider,et al.  A survey of visualization tools for biological network analysis , 2008, BioData Mining.

[119]  Edward R. Dougherty,et al.  Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks , 2002, Bioinform..

[120]  Vincent Danos,et al.  Rule-Based Modelling of Cellular Signalling , 2007, CONCUR.

[121]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[122]  Claire J. Tomlin,et al.  Lateral Inhibition through Delta-Notch Signaling: A Piecewise Affine Hybrid Model , 2001, HSCC.

[123]  Natalio Krasnogor,et al.  Evolving cell models for systems and synthetic biology , 2010, Systems and Synthetic Biology.

[124]  Annegret Wagler,et al.  Reconstruction of extended Petri nets from time series data and its application to signal transduction and to gene regulatory networks , 2011, BMC Systems Biology.

[125]  David Harel,et al.  Four-dimensional realistic modeling of pancreatic organogenesis , 2008, Proceedings of the National Academy of Sciences.

[126]  Denis Noble,et al.  The rise of computational biology , 2002, Nature Reviews Molecular Cell Biology.

[127]  Bernhard O. Palsson,et al.  Dynamic simulation of the human red blood cell metabolic network , 2001, Bioinform..

[128]  A Finney,et al.  Systems biology markup language: Level 2 and beyond. , 2003, Biochemical Society transactions.

[129]  Denis Thieffry,et al.  Qualitative Modelling of Genetic Networks: From Logical Regulatory Graphs to Standard Petri Nets , 2004, ICATPN.

[130]  Jamey D. Young,et al.  Integrating cybernetic modeling with pathway analysis provides a dynamic, systems‐level description of metabolic control , 2008, Biotechnology and bioengineering.

[131]  B. Palsson,et al.  Transcriptional regulation in constraints-based metabolic models of Escherichia coli Covert , 2002 .

[132]  Christoph Kaleta,et al.  Phenotype prediction in regulated metabolic networks , 2008, BMC Systems Biology.

[133]  Marco Grzegorczyk,et al.  Modelling non-stationary gene regulatory processes with a non-homogeneous Bayesian network and the allocation sampler , 2008, Bioinform..

[134]  C. Petri Kommunikation mit Automaten , 1962 .

[135]  Satoru Miyano,et al.  Inferring qualitative relations in genetic networks and metabolic pathways , 2000, Bioinform..

[136]  Neil Swainston,et al.  Towards a genome-scale kinetic model of cellular metabolism , 2010, BMC Systems Biology.

[137]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[138]  Bryant A. Julstrom,et al.  Evolving petri nets to represent metabolic pathways , 2005, GECCO '05.

[139]  Jens U. Wurthner,et al.  A cellular automaton model of cellular signal transduction , 2000, Comput. Biol. Medicine.

[140]  Danail Bonchev,et al.  Modeling Biochemical Networks: A Cellular‐Automata Approach , 2005, Chemistry & biodiversity.

[141]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[142]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[143]  Christoph Kaleta,et al.  Computing chemical organizations in biological networks , 2008, Bioinform..

[144]  David Harel,et al.  Computational insights into Caenorhabditis elegans vulval development. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[145]  Adam M. Feist,et al.  A comprehensive genome-scale reconstruction of Escherichia coli metabolism—2011 , 2011, Molecular systems biology.

[146]  Mike Holcombe,et al.  Introducing Spatial Information into Predictive NF-κB Modelling – An Agent-Based Approach , 2008, PloS one.

[147]  C. Clevenger Signal transduction. , 2003, Breast disease.

[148]  Ruth Nussinov,et al.  A formal MIM specification and tools for the common exchange of MIM diagrams: an XML-Based format, an API, and a validation method , 2011, BMC Bioinformatics.

[149]  Adam M. Feist,et al.  Reconstruction of biochemical networks in microorganisms , 2009, Nature Reviews Microbiology.

[150]  Francesco Pappalardo,et al.  Discovery of cancer vaccination protocols with a genetic algorithm driving an agent based simulator , 2006, BMC Bioinformatics.

[151]  Denis Thieffry,et al.  Qualitative modelling of regulated metabolic pathways: application to the tryptophan biosynthesis in E.Coli , 2005, ECCB/JBI.

[152]  Barbara M. Bakker,et al.  Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. , 2000, European journal of biochemistry.

[153]  Nir Friedman,et al.  Inferring Cellular Networks Using Probabilistic Graphical Models , 2004, Science.

[154]  J. Weinstein,et al.  Depicting combinatorial complexity with the molecular interaction map notation , 2006, Molecular systems biology.

[155]  Corrado Priami,et al.  BlenX4Bio - BlenX for Biologists , 2009, CMSB.

[156]  Corrado Priami,et al.  Application of a stochastic name-passing calculus to representation and simulation of molecular processes , 2001, Inf. Process. Lett..

[157]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[158]  Guy Karlebach,et al.  Modelling and analysis of gene regulatory networks , 2008, Nature Reviews Molecular Cell Biology.

[159]  Peter Dittrich,et al.  Chemical Organizations in the Central Sugar Metabolism of Escherichia coli , 2007 .

[160]  ROBIN MILNER,et al.  Edinburgh Research Explorer A Calculus of Mobile Processes, I , 2003 .

[161]  David Harel,et al.  LSCs: Breathing Life into Message Sequence Charts , 1999, Formal Methods Syst. Des..

[162]  A. Barabasi,et al.  Hierarchical Organization of Modularity in Metabolic Networks , 2002, Science.

[163]  Vincent Danos,et al.  Internal coarse-graining of molecular systems , 2009, Proceedings of the National Academy of Sciences.

[164]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[165]  C. Anthony Hunt,et al.  Simulating Properties of In Vitro Epithelial Cell Morphogenesis , 2006, PLoS Comput. Biol..

[166]  David Harel,et al.  The immune system as a reactive system: modeling T cell activation with statecharts , 2001, Proceedings IEEE Symposia on Human-Centric Computing Languages and Environments (Cat. No.01TH8587).

[167]  Richard Banks,et al.  Qualitatively modelling and analysing genetic regulatory networks: a Petri net approach , 2007, Bioinform..

[168]  D. Harel,et al.  Toward rigorous comprehension of biological complexity: modeling, execution, and visualization of thymic T-cell maturation. , 2003, Genome research.

[169]  J. Massagué TGF-beta signal transduction. , 1998, Annual review of biochemistry.

[170]  Mark M. Meerschaert,et al.  Mathematical Modeling , 2014, Encyclopedia of Social Network Analysis and Mining.

[171]  Corrado Priami,et al.  Evolving BlenX programs to simulate the evolution of biological networks , 2008, Theor. Comput. Sci..

[172]  Jane Hillston,et al.  Bio-PEPA: An Extension of the Process Algebra PEPA for Biochemical Networks , 2007, FBTC@CONCUR.

[173]  Robin Milner,et al.  A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.

[174]  Raymond R. Devillers,et al.  Incremental and unifying modelling formalism for biological interaction networks , 2007, BMC Bioinformatics.

[175]  Sunwoo Park,et al.  Dichotomies between computational and mathematical models , 2008, Nature Biotechnology.

[176]  Masaru Tomita,et al.  Space in systems biology of signaling pathways – towards intracellular molecular crowding in silico , 2005, FEBS letters.

[177]  G B Ermentrout,et al.  Cellular automata approaches to biological modeling. , 1993, Journal of theoretical biology.

[178]  Dipak Barua,et al.  A Bipolar Clamp Mechanism for Activation of Jak-Family Protein Tyrosine Kinases , 2009, PLoS Comput. Biol..

[179]  Nan Xiao,et al.  Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli , 2008, Bioinform..

[180]  Steffen Klamt,et al.  A methodology for the structural and functional analysis of signaling and regulatory networks , 2006, BMC Bioinformatics.

[181]  Hiroaki Kitano,et al.  CellDesigner: a process diagram editor for gene-regulatory and biochemical networks , 2003 .

[182]  David Camacho,et al.  Cellulat: an agent-based intracellular signalling model. , 2003, Bio Systems.

[183]  Thomas A. Henzinger,et al.  Reactive Modules , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[184]  Aviv Regev,et al.  Representation and Simulation of Biochemical Processes Using the pi-Calculus Process Algebra , 2000, Pacific Symposium on Biocomputing.

[185]  R. Sharan,et al.  A genome-scale computational study of the interplay between transcriptional regulation and metabolism , 2007, Molecular systems biology.

[186]  Robin Milner,et al.  A Calculus of Mobile Processes, II , 1992, Inf. Comput..

[187]  E. Andrianantoandro,et al.  Synthetic biology: new engineering rules for an emerging discipline , 2006, Molecular systems biology.

[188]  Gordon D. Plotkin,et al.  A Language for Biochemical Systems: Design and Formal Specification , 2010, Trans. Comp. Sys. Biology.

[189]  Catherine M Lloyd,et al.  CellML: its future, present and past. , 2004, Progress in biophysics and molecular biology.

[190]  D. Ramkrishna,et al.  A hybrid model of anaerobic E. coli GJT001: Combination of elementary flux modes and cybernetic variables , 2008, Biotechnology progress.

[191]  Björn H. Junker,et al.  Computational Models of Metabolism: Stability and Regulation in Metabolic Networks , 2008 .

[192]  David W. Corne,et al.  Dynamics of HIV infection studied with cellular automata and conformon-P systems , 2008, Biosyst..

[193]  K. Kohn Molecular interaction map of the mammalian cell cycle control and DNA repair systems. , 1999, Molecular biology of the cell.

[194]  Monika Heiner,et al.  A structured approach for the engineering of biochemical network models, illustrated for signalling pathways , 2008, Briefings Bioinform..

[195]  William S. Hlavacek,et al.  BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains , 2004, Bioinform..

[196]  William S. Hlavacek,et al.  RuleMonkey: software for stochastic simulation of rule-based models , 2010, BMC Bioinformatics.

[197]  Dipak Barua,et al.  Structure-based kinetic models of modular signaling protein function: focus on Shp2. , 2007, Biophysical journal.

[198]  D. Lauffenburger,et al.  Physicochemical modelling of cell signalling pathways , 2006, Nature Cell Biology.

[199]  Vincent Danos,et al.  Rule-Based Modelling and Model Perturbation , 2009, Trans. Comp. Sys. Biology.

[200]  Bartek Wilczynski,et al.  Applying dynamic Bayesian networks to perturbed gene expression data , 2006, BMC Bioinformatics.

[201]  Kenneth J. Kauffman,et al.  Advances in flux balance analysis. , 2003, Current opinion in biotechnology.

[202]  Thomas Hinze,et al.  Rule-based spatial modeling with diffusing, geometrically constrained molecules , 2010, BMC Bioinformatics.

[203]  M. Reuss,et al.  In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model. , 1997, Biotechnology and bioengineering.

[204]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[205]  Ian Stark,et al.  The Continuous pi-Calculus: A Process Algebra for Biochemical Modelling , 2008, CMSB.