RBF approximation by partition of unity for valuation of options under exponential Lévy processes

Abstract The prices of European and American-style contracts on assets driven by Markov processes satisfy partial integro-differential equations (PIDEs). In particular, this holds true for assets driven by Levy processes, which are very popular in mathematical finance. We focus below on Levy processes whose jump part has infinite (small jumps) activity, in which case the resulting singular kernel is rather difficult to treat numerically [1] , [23] . We illustrate, using the CGMY example, that this challenge may be successfully met by using a combination of: a) the Asmussen-Rosinsky approximation of the small jumps by Brownian motion; b) localized RBF approximations known as the RBF partition of unity (RBF-PU), which overcome the ill-conditioning inherent in global mesh-free methods; c) Crank-Nicolson Leap-Frog (CNLF) for time discretization. d) treating the local term using an implicit step, and the nonlocal term using an explicit step (to avoid the inversion of the nonsparse matrix) Finally, to deal with free boundary problems associated to American options, we combine the implicit-explicit method with a penalty method. Efficiency and practical performance are demonstrated by several numerical experiments for pricing European and American contracts.

[1]  Jesper Andreasen,et al.  Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Pricing , 1999 .

[2]  Holger Wendland,et al.  Fast evaluation of radial basis functions : methods based on partition of unity , 2002 .

[3]  Cornelis W. Oosterlee,et al.  A Novel Pricing Method for European Options Based on Fourier-Cosine Series Expansions , 2008, SIAM J. Sci. Comput..

[4]  Jari Toivanen,et al.  Operator splitting methods for American option pricing , 2004, Appl. Math. Lett..

[5]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[6]  Rama Cont,et al.  A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models , 2005, SIAM J. Numer. Anal..

[7]  Cornelis W. Oosterlee,et al.  Accurate Evaluation of European and American Options Under the CGMY Process , 2007, SIAM J. Sci. Comput..

[8]  Hans-Jakob Lüthi,et al.  Pricing American Put Options by Fast Solutions of the Linear Complementarity Problem , 2002 .

[9]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[10]  R. Mollapourasl,et al.  Radial Basis Functions with Partition of Unity Method for American Options with Stochastic Volatility , 2019 .

[11]  R. Cont,et al.  Financial Modelling with Jump Processes , 2003 .

[12]  Roberto Cavoretto,et al.  Spherical interpolation using the partition of unity method: An efficient and flexible algorithm , 2012, Appl. Math. Lett..

[13]  Roberto Cavoretto,et al.  A meshless interpolation algorithm using a cell-based searching procedure , 2014, Comput. Math. Appl..

[14]  Frank Cuypers Tools for Computational Finance , 2003 .

[15]  George Labahn,et al.  A penalty method for American options with jump diffusion processes , 2004, Numerische Mathematik.

[16]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[17]  E. Seneta,et al.  The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .

[18]  Elisabeth Larsson,et al.  A Radial Basis Function Partition of Unity Collocation Method for Convection–Diffusion Equations Arising in Financial Applications , 2015, J. Sci. Comput..

[19]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[20]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[21]  Elisabeth Larsson,et al.  Radial basis function partition of unity methods for pricing vanilla basket options , 2016, Comput. Math. Appl..

[22]  Xun Lu,et al.  RBF-PU method for pricing options under the jump-diffusion model with local volatility , 2018, J. Comput. Appl. Math..

[23]  Peter A. Forsyth,et al.  Penalty methods for American options with stochastic volatility , 1998 .

[24]  Cornelis W. Oosterlee,et al.  A Fast and Accurate FFT-Based Method for Pricing Early-Exercise Options under L[e-acute]vy Processes , 2008, SIAM J. Sci. Comput..

[25]  G. Russo,et al.  Implicit–explicit numerical schemes for jump–diffusion processes , 2007 .

[26]  Jari Toivanen,et al.  Numerical Valuation of European and American Options under Kou's Jump-Diffusion Model , 2008, SIAM J. Sci. Comput..

[27]  P. Forsyth,et al.  Robust numerical methods for contingent claims under jump diffusion processes , 2005 .

[28]  Peter A. Forsyth,et al.  Numerical solution of two asset jump diffusion models for option valuation , 2008 .

[29]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[30]  Iris R. Wang,et al.  Robust numerical valuation of European and American options under the CGMY process , 2007 .

[31]  P. Carr,et al.  Option valuation using the fast Fourier transform , 1999 .

[32]  Steven Kou,et al.  A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..

[33]  S. Asmussen,et al.  Approximations of small jumps of Lévy processes with a view towards simulation , 2001, Journal of Applied Probability.

[34]  David S. Bates Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .

[35]  Elisabeth Larsson,et al.  Improved radial basis function methods for multi-dimensional option pricing , 2008 .

[36]  Lucas Jódar,et al.  Solving partial integro-differential option pricing problems for a wide class of infinite activity Lévy processes , 2016, J. Comput. Appl. Math..

[37]  Nicholas G. Polson,et al.  The Impact of Jumps in Volatility and Returns , 2000 .

[38]  Zongmin Wu,et al.  Convergence error estimate in solving free boundary diffusion problem by radial basis functions method , 2003 .

[39]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[40]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[41]  Wim Schoutens,et al.  Pricing Credit Default Swaps Under Levy Models , 2007 .

[42]  D. Madan,et al.  Pricing American options under variance gamma , 2003 .

[43]  R. Schaback A unified theory of radial basis functions Native Hilbert spaces for radial basis functions II , 2000 .

[44]  D. Tangman,et al.  Numerical pricing of American options under infinite activity Lévy processes , 2011 .

[45]  Jaewook Lee,et al.  Tridiagonal implicit method to evaluate European and American options under infinite activity Lévy models , 2013, J. Comput. Appl. Math..

[46]  A. Tveito,et al.  Penalty and front-fixing methods for the numerical solution of American option problems , 2002 .

[47]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[48]  G. Fasshauer,et al.  Using meshfree approximation for multi‐asset American options , 2004 .

[49]  C. Schwab,et al.  Wavelet Galerkin pricing of American options on Lévy driven assets , 2005 .

[50]  Cornelis W. Oosterlee,et al.  Pricing early-exercise and discrete barrier options by fourier-cosine series expansions , 2009, Numerische Mathematik.