RBF approximation by partition of unity for valuation of options under exponential Lévy processes
暂无分享,去创建一个
[1] Jesper Andreasen,et al. Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Pricing , 1999 .
[2] Holger Wendland,et al. Fast evaluation of radial basis functions : methods based on partition of unity , 2002 .
[3] Cornelis W. Oosterlee,et al. A Novel Pricing Method for European Options Based on Fourier-Cosine Series Expansions , 2008, SIAM J. Sci. Comput..
[4] Jari Toivanen,et al. Operator splitting methods for American option pricing , 2004, Appl. Math. Lett..
[5] Holger Wendland,et al. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..
[6] Rama Cont,et al. A Finite Difference Scheme for Option Pricing in Jump Diffusion and Exponential Lévy Models , 2005, SIAM J. Numer. Anal..
[7] Cornelis W. Oosterlee,et al. Accurate Evaluation of European and American Options Under the CGMY Process , 2007, SIAM J. Sci. Comput..
[8] Hans-Jakob Lüthi,et al. Pricing American Put Options by Fast Solutions of the Linear Complementarity Problem , 2002 .
[9] R. C. Merton,et al. Option pricing when underlying stock returns are discontinuous , 1976 .
[10] R. Mollapourasl,et al. Radial Basis Functions with Partition of Unity Method for American Options with Stochastic Volatility , 2019 .
[11] R. Cont,et al. Financial Modelling with Jump Processes , 2003 .
[12] Roberto Cavoretto,et al. Spherical interpolation using the partition of unity method: An efficient and flexible algorithm , 2012, Appl. Math. Lett..
[13] Roberto Cavoretto,et al. A meshless interpolation algorithm using a cell-based searching procedure , 2014, Comput. Math. Appl..
[14] Frank Cuypers. Tools for Computational Finance , 2003 .
[15] George Labahn,et al. A penalty method for American options with jump diffusion processes , 2004, Numerische Mathematik.
[16] I. Babuska,et al. The Partition of Unity Method , 1997 .
[17] E. Seneta,et al. The Variance Gamma (V.G.) Model for Share Market Returns , 1990 .
[18] Elisabeth Larsson,et al. A Radial Basis Function Partition of Unity Collocation Method for Convection–Diffusion Equations Arising in Financial Applications , 2015, J. Sci. Comput..
[19] Gregory E. Fasshauer,et al. Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.
[20] D. Shepard. A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.
[21] Elisabeth Larsson,et al. Radial basis function partition of unity methods for pricing vanilla basket options , 2016, Comput. Math. Appl..
[22] Xun Lu,et al. RBF-PU method for pricing options under the jump-diffusion model with local volatility , 2018, J. Comput. Appl. Math..
[23] Peter A. Forsyth,et al. Penalty methods for American options with stochastic volatility , 1998 .
[24] Cornelis W. Oosterlee,et al. A Fast and Accurate FFT-Based Method for Pricing Early-Exercise Options under L[e-acute]vy Processes , 2008, SIAM J. Sci. Comput..
[25] G. Russo,et al. Implicit–explicit numerical schemes for jump–diffusion processes , 2007 .
[26] Jari Toivanen,et al. Numerical Valuation of European and American Options under Kou's Jump-Diffusion Model , 2008, SIAM J. Sci. Comput..
[27] P. Forsyth,et al. Robust numerical methods for contingent claims under jump diffusion processes , 2005 .
[28] Peter A. Forsyth,et al. Numerical solution of two asset jump diffusion models for option valuation , 2008 .
[29] F. Black,et al. The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.
[30] Iris R. Wang,et al. Robust numerical valuation of European and American options under the CGMY process , 2007 .
[31] P. Carr,et al. Option valuation using the fast Fourier transform , 1999 .
[32] Steven Kou,et al. A Jump Diffusion Model for Option Pricing , 2001, Manag. Sci..
[33] S. Asmussen,et al. Approximations of small jumps of Lévy processes with a view towards simulation , 2001, Journal of Applied Probability.
[34] David S. Bates. Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Thephlx Deutschemark Options , 1993 .
[35] Elisabeth Larsson,et al. Improved radial basis function methods for multi-dimensional option pricing , 2008 .
[36] Lucas Jódar,et al. Solving partial integro-differential option pricing problems for a wide class of infinite activity Lévy processes , 2016, J. Comput. Appl. Math..
[37] Nicholas G. Polson,et al. The Impact of Jumps in Volatility and Returns , 2000 .
[38] Zongmin Wu,et al. Convergence error estimate in solving free boundary diffusion problem by radial basis functions method , 2003 .
[39] M. Yor,et al. The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .
[40] Martin D. Buhmann,et al. Radial Basis Functions: Theory and Implementations: Preface , 2003 .
[41] Wim Schoutens,et al. Pricing Credit Default Swaps Under Levy Models , 2007 .
[42] D. Madan,et al. Pricing American options under variance gamma , 2003 .
[43] R. Schaback. A unified theory of radial basis functions Native Hilbert spaces for radial basis functions II , 2000 .
[44] D. Tangman,et al. Numerical pricing of American options under infinite activity Lévy processes , 2011 .
[45] Jaewook Lee,et al. Tridiagonal implicit method to evaluate European and American options under infinite activity Lévy models , 2013, J. Comput. Appl. Math..
[46] A. Tveito,et al. Penalty and front-fixing methods for the numerical solution of American option problems , 2002 .
[47] Martin D. Buhmann,et al. Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.
[48] G. Fasshauer,et al. Using meshfree approximation for multi‐asset American options , 2004 .
[49] C. Schwab,et al. Wavelet Galerkin pricing of American options on Lévy driven assets , 2005 .
[50] Cornelis W. Oosterlee,et al. Pricing early-exercise and discrete barrier options by fourier-cosine series expansions , 2009, Numerische Mathematik.