Delay-Aware Transmission Range Control for VANETs

End-to-end delay is critical for the real-time safety message delivery in Vehicular Ad Hoc Networks (VANETs). In this paper, we present an analytical model to evaluate the impact of transmission range on the end-to-end delay in 802.11p-based VANETs. Compared with the previous works, our model derives a concise expression of the transmission delay in saturated networks, and obtains the service rate of non-saturated networks with novel methodology. To the best of our knowledge, it is the first complete analytical model that reveals the significant end-to-end delay difference between saturation and non-saturation cases.

[1]  S.A. Kotsopoulos,et al.  On the End-to-End Delay Analysis of the IEEE 802.11 Distributed Coordination Function , 2007, Second International Conference on Internet Monitoring and Protection (ICIMP 2007).

[2]  Alhussein A. Abouzeid,et al.  Queuing network models for delay analysis of multihop wireless ad hoc networks , 2006, IWCMC '06.

[3]  Devavrat Shah,et al.  Throughput-delay trade-off in energy constrained wireless networks , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[4]  David Malone,et al.  Modeling the 802.11 distributed coordination function in non-saturated conditions , 2005, IEEE Communications Letters.

[5]  Satish V. Ukkusuri,et al.  Geometric connectivity of vehicular ad hoc networks: analytical characterization , 2007, VANET '07.

[6]  Hang Su,et al.  Clustering-Based Multichannel MAC Protocols for QoS Provisionings Over Vehicular Ad Hoc Networks , 2007, IEEE Transactions on Vehicular Technology.

[7]  Azim Eskandarian,et al.  Challenges of intervehicle ad hoc networks , 2004, IEEE Transactions on Intelligent Transportation Systems.

[8]  Thomas G Robertazzi Computer networks and system:qucuing theory and performance evaluation , 2012 .

[9]  Jianping Pan,et al.  Performance Analysis and Evaluation of H.264 Video Streaming over Multi-Hop Wireless Networks , 2008, IEEE GLOBECOM 2008 - 2008 IEEE Global Telecommunications Conference.

[10]  Abhay Karandikar,et al.  Characterizing the exit process of a non-saturated IEEE 802.11 wireless network , 2009, MobiHoc '09.

[11]  Sung-Ju Lee,et al.  Transmission power control in wireless ad hoc networks: challenges, solutions and open issues , 2004, IEEE Network.

[12]  Yang Xiao,et al.  Performance analysis of priority schemes for IEEE 802.11 and IEEE 802.11e wireless LANs , 2005, IEEE Transactions on Wireless Communications.

[13]  Panganamala Ramana Kumar,et al.  RHEINISCH-WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN , 2001 .

[14]  Subir Biswas,et al.  Vehicle-to-vehicle wireless communication protocols for enhancing highway traffic safety , 2006, IEEE Communications Magazine.

[15]  Panagiotis Papadimitratos,et al.  Efficient and robust pseudonymous authentication in VANET , 2007, VANET '07.

[16]  J. J. Garcia-Luna-Aceves,et al.  Delay analysis of IEEE 802.11 in single-hop networks , 2003, 11th IEEE International Conference on Network Protocols, 2003. Proceedings..

[17]  Brad Karp,et al.  GPSR : Greedy Perimeter Stateless Routing for Wireless , 2000, MobiCom 2000.

[18]  Huirong Fu,et al.  Simulation and Analysis of Extended Brake Lights for Inter-Vehicle Communication Networks , 2007, 27th International Conference on Distributed Computing Systems Workshops (ICDCSW'07).

[19]  A. Girotra,et al.  Performance Analysis of the IEEE 802 . 11 Distributed Coordination Function , 2005 .

[20]  M. Latva-aho,et al.  Performance Analysis of IEEE 802.11 DCF in non-Saturated Single-hop Wireless Local Area Networks , 2007, 2007 14th IEEE Symposium on Communications and Vehicular Technology in the Benelux.