NON-VARIATIONAL APPROXIMATION OF DISCRETE EIGENVALUES OF SELF-ADJOINT OPERATORS
暂无分享,去创建一个
[1] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[2] Leiba Rodman,et al. Matrices and indefinite scalar products , 1983 .
[3] Michael Levitin,et al. Spectral pollution and second-order relative spectra for self-adjoint operators , 2002 .
[4] Nicholas J. Higham,et al. Structured Pseudospectra for Polynomial Eigenvalue Problems, with Applications , 2001, SIAM J. Matrix Anal. Appl..
[5] Projection Methods for Discrete Schrödinger Operators , 2002, math/0201227.
[6] J. Rappaz,et al. On spectral pollution in the finite element approximation of thin elastic “membrane” shells , 1997 .
[7] Peter Lancaster,et al. On the Pseudospectra of Matrix Polynomials , 2005, SIAM J. Matrix Anal. Appl..
[8] Daniele Boffi,et al. On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form , 2000, Math. Comput..
[9] R. E. Edwards,et al. Fourier series : a modern introduction , 1982 .
[10] E B Davies,et al. Spectral Pollution , 2002 .
[11] Monique Dauge,et al. Numerical approximation of the spectra of non-compact operators arising in buckling problems , 2002, J. Num. Math..
[12] D. Arnold. Differential complexes and numerical stability , 2002, math/0212391.
[13] Lyonell Boulton. Limiting set of second order spectra , 2006, Math. Comput..
[14] B. Simon,et al. Schrödinger Semigroups , 2007 .