The Constructibility of a Configuration in a Cellular automaton
暂无分享,去创建一个
[1] Serafino Amoroso,et al. Decision Procedures for Surjectivity and Injectivity of Parallel Maps for Tessellation Structures , 1972, J. Comput. Syst. Sci..
[2] S. Amoroso,et al. The Garden-of-Eden theorem for finite configurations , 1970 .
[3] E. F. Codd,et al. Cellular automata , 1968 .
[4] Alvy Ray Smith,et al. Simple Computation-Universal Cellular Spaces , 1971, JACM.
[5] G. Herman. Computing ability of a developmental model for filamentous organisms. , 1969, Journal of theoretical biology.
[6] Serafino Amoroso,et al. A Completeness Problem for Pattern Generation in Tessellation Automata , 1970, J. Comput. Syst. Sci..
[7] J. Myhill. The converse of Moore’s Garden-of-Eden theorem , 1963 .
[8] Hidenosuke Nishio,et al. Some regular state sets in the system of one-dimensional iterative automata , 1973, Inf. Sci..
[9] Serafino Amoroso,et al. Tessellation Structures for Reproduction of Arbitrary Patterns , 1971, J. Comput. Syst. Sci..
[10] Marvin Minsky,et al. Computation : finite and infinite machines , 2016 .
[11] E. F. Moore. Machine Models of Self-Reproduction , 1962 .
[12] Thomas J. Ostrand. Pattern Reproduction in Tessellation Automata of Arbitrary Dimension , 1971, J. Comput. Syst. Sci..
[13] John von Neumann,et al. Theory Of Self Reproducing Automata , 1967 .
[14] Serafino Amoroso,et al. Structural and Behavioral Equivalences of Tessellation Automata , 1971, Inf. Control..