Influence of interface structure on photoelectric properties of InGaN light-emitting diodes

Abstract The influence of interface structure on the photoelectric properties of InGaN light-emitting diodes grown on (0001) polar, (11–22) semi-polar, and (11–20) nonpolar planes is studied. Nonpolar and semi-polar interface structures are characterized by reduced polarization-related electric fields and suppressed QCSE. The energy bands of the structures grown on these orientations are undistorted, and QWs have more rectangular shapes. Consequently, these structures do not undergo separation of the electron and hole wavefunctions typical of c-plane structures. The simulation results suggest that potoelectric properties and efficiency drop is markedly improved when the polar interface structure is replaced by nonpolar or semi-polar interface structures.

[1]  Lester F. Eastman,et al.  Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures , 1999 .

[2]  G. Verzellesi,et al.  Efficiency droop in InGaN/GaN blue light-emitting diodes: Physical mechanisms and remedies , 2013 .

[3]  T. Wunderer,et al.  GaInN‐based LED structures on selectively grown semi‐polar crystal facets , 2010 .

[4]  Yong Zeng,et al.  Theoretical study of polarization-doped GaN-based light-emitting diodes , 2011 .

[5]  S. Nakamura,et al.  Strain-induced polarization in wurtzite III-nitride semipolar layers , 2006 .

[6]  James S. Speck,et al.  Prospects for LED lighting , 2009 .

[7]  Cheolsoo Sone,et al.  Visible‐Color‐Tunable Light‐Emitting Diodes , 2011, Advanced materials.

[8]  S. Denbaars,et al.  Comparative study of field-dependent carrier dynamics and emission kinetics of InGaN/GaN light-emitting diodes grown on (11 2 ̄ 2) semipolar versus (0001) polar planes , 2014 .

[9]  E. Yoon,et al.  Strong Carrier Localization and Diminished Quantum-confined Stark Effect in Ultra-thin High-Indium-content InGaN Quantum Wells with Violet Light Emission , 2013 .

[10]  Nobuhiro Saga,et al.  Low Threshold Current Density InGaN Based 520–530 nm Green Laser Diodes on Semi-Polar {2021} Free-Standing GaN Substrates , 2010 .

[11]  Mathew C. Schmidt,et al.  Study of nonpolar m-plane InGaN∕GaN multiquantum well light emitting diodes grown by homoepitaxial metal-organic chemical vapor deposition , 2007 .

[12]  D. Bour,et al.  Nitride-based semiconductors for blue and green light-emitting devices , 1997, Nature.

[13]  H. Ohta,et al.  Dislocation-Free m-Plane InGaN/GaN Light-Emitting Diodes on m-Plane GaN Single Crystals , 2006 .

[14]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[15]  C. Wetzel,et al.  Wavelength-stable rare earth-free green light-emitting diodes for energy efficiency. , 2011, Optics express.

[16]  S. Denbaars,et al.  Materials and growth issues for high-performance nonpolar and semipolar light-emitting devices , 2012 .

[17]  H. Masui,et al.  Nonpolar and Semipolar III-Nitride Light-Emitting Diodes: Achievements and Challenges , 2010, IEEE Transactions on Electron Devices.

[18]  Mathew C. Schmidt,et al.  Improved electroluminescence on nonpolar m ‐plane InGaN/GaN quantum wells LEDs , 2007 .

[19]  Z. Liu,et al.  Independent variations of applied voltage and injection current for controlling the quantum-confined Stark effect in an InGaN/GaN quantum-well light-emitting diode. , 2014, Optics express.

[20]  Mathew C. Schmidt,et al.  Demonstration of Nonpolar m-Plane InGaN/GaN Laser Diodes , 2007 .

[21]  M. Asif Khan,et al.  Visible light-emitting diodes using a-plane GaN–InGaN multiple quantum wells over r-plane sapphire , 2004 .

[22]  S. Dhar,et al.  Quantum-confined stark effect in localized luminescent centers within InGaN/GaN quantum-well based light emitting diodes , 2012 .