Polymer nanofiber network reinforced gold electrode array for neural activity recording

[1]  Justin R. Sperling,et al.  Full-bandwidth electrophysiology of seizures and epileptiform activity enabled by flexible graphene microtransistor depth neural probes , 2021, Nature Nanotechnology.

[2]  Justin R. Sperling,et al.  Full bandwidth electrophysiology of seizures and epileptiform activity enabled by flexible graphene micro-transistor depth neural probes , 2021, bioRxiv.

[3]  G. Northoff,et al.  Scale-Free Analysis of Intraoperative ECoG During Awake Craniotomy for Glioma , 2021, Frontiers in Oncology.

[4]  I. Kim,et al.  Evaluating Antibacterial Efficacy and Biocompatibility of PAN Nanofibers Loaded with Diclofenac Sodium Salt , 2021, Polymers.

[5]  Dong Ming,et al.  Micro- and nanotechnology for neural electrode-tissue interfaces. , 2020, Biosensors & bioelectronics.

[6]  Fritjof Helmchen,et al.  Opto‐E‐Dura: A Soft, Stretchable ECoG Array for Multimodal, Multiscale Neuroscience , 2020, Advanced healthcare materials.

[7]  Mi Kyung Kim,et al.  Artifact‐Free 2D Mapping of Neural Activity In Vivo through Transparent Gold Nanonetwork Array , 2020, Advanced Functional Materials.

[8]  Hui Fang,et al.  Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates , 2020, Science Translational Medicine.

[9]  Yang Liu,et al.  Gas-Permeable, Irritation-Free, Transparent Hydrogel Contact Lens Devices with Metal-Coated Nanofiber Mesh for Eye Interfacing. , 2019, ACS nano.

[10]  Fei Gao,et al.  In situ detection of neurotransmitters and epileptiform electrophysiology activity in awake mice brains using a nanocomposites modified microelectrode array , 2019, Sensors and Actuators B: Chemical.

[11]  Zhongfan Liu,et al.  Transfer-Medium-Free Nanofiber-Reinforced Graphene Film and Applications in Wearable Transparent Pressure Sensors. , 2019, ACS nano.

[12]  Jidong Shi,et al.  Flexible Micropillar Electrode Arrays for In Vivo Neural Activity Recordings. , 2019, Small.

[13]  T. Sekitani,et al.  Long‐Term Implantable, Flexible, and Transparent Neural Interface Based on Ag/Au Core–Shell Nanowires , 2019, Advanced healthcare materials.

[14]  Shan Zhang,et al.  Silk‐Enabled Conformal Multifunctional Bioelectronics for Investigation of Spatiotemporal Epileptiform Activities and Multimodal Neural Encoding/Decoding , 2019, Advanced science.

[15]  Yei Hwan Jung,et al.  Progress in the Field of Micro-Electrocorticography , 2019, Micromachines.

[16]  Brian Litt,et al.  High interictal connectivity within the resection zone is associated with favorable post-surgical outcomes in focal epilepsy patients , 2018, NeuroImage: Clinical.

[17]  Jidong Shi,et al.  Flexible and Implantable Microelectrodes for Chronically Stable Neural Interfaces , 2018, Advanced materials.

[18]  Geon Hwee Kim,et al.  Recent Progress on Microelectrodes in Neural Interfaces , 2018, Materials.

[19]  Xingyu Jiang,et al.  Bacterial Cellulose as a Supersoft Neural Interfacing Substrate. , 2018, ACS applied materials & interfaces.

[20]  Chengyuan Wu,et al.  Chronically Implanted Intracranial Electrodes: Tissue Reaction and Electrical Changes , 2018, Micromachines.

[21]  Jing Zhang,et al.  Stretchable Transparent Electrode Arrays for Simultaneous Electrical and Optical Interrogation of Neural Circuits in Vivo. , 2018, Nano letters.

[22]  Hanlin Zhu,et al.  Nanofabricated Ultraflexible Electrode Arrays for High‐Density Intracortical Recording , 2018, Advanced science.

[23]  Sydney S. Cash,et al.  Development and Translation of PEDOT:PSS Microelectrodes for Intraoperative Monitoring , 2018 .

[24]  A. Kral,et al.  New thin-film surface electrode array enables brain mapping with high spatial acuity in rodents , 2018, Scientific Reports.

[25]  Zhiqiang Fang,et al.  Flexible and biocompatible nanopaper-based electrode arrays for neural activity recording , 2018, Nano Research.

[26]  Karl Deisseroth,et al.  Next-generation probes, particles, and proteins for neural interfacing , 2017, Science Advances.

[27]  Jochen Guck,et al.  Materials and technologies for soft implantable neuroprostheses , 2016, Nature Reviews Materials.

[28]  Changkyun Im,et al.  A review of electrodes for the electrical brain signal recording , 2016 .

[29]  Huanyu Cheng,et al.  Graphene Reinforced Carbon Nanotube Networks for Wearable Strain Sensors , 2016 .

[30]  Vivek Subramanian,et al.  Inkjet‐Printed Flexible Gold Electrode Arrays for Bioelectronic Interfaces , 2016 .

[31]  Se-Bum Paik,et al.  Optogenetic Mapping of Functional Connectivity in Freely Moving Mice via Insertable Wrapping Electrode Array Beneath the Skull. , 2016, ACS nano.

[32]  Bo Liedberg,et al.  Highly Stretchable Gold Nanobelts with Sinusoidal Structures for Recording Electrocorticograms , 2015, Advanced materials.

[33]  A. Michael,et al.  Brain Tissue Responses to Neural Implants Impact Signal Sensitivity and Intervention Strategies , 2014, ACS chemical neuroscience.

[34]  G. Buzsáki,et al.  NeuroGrid: recording action potentials from the surface of the brain , 2014, Nature Neuroscience.

[35]  Theodore H Schwartz,et al.  Intraoperative ElectroCorticoGraphy (ECog): indications, techniques, and utility in epilepsy surgery. , 2014, Epileptic disorders : international epilepsy journal with videotape.

[36]  M. Abidian,et al.  A Review of Organic and Inorganic Biomaterials for Neural Interfaces , 2014, Advanced materials.

[37]  Luciano Fadiga,et al.  Biologically compatible neural interface to safely couple nanocoated electrodes to the surface of the brain. , 2013, ACS nano.

[38]  C. Schevon,et al.  Propagation of Epileptiform Activity on a Submillimeter Scale , 2010, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[39]  Justin A. Blanco,et al.  Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. , 2010, Nature materials.

[40]  Luca Regli,et al.  Simultaneous multilobar electrocorticography (mEcoG) and scalp electroencephalography (scalp EEG) during intracranial vascular surgery: A new approach in neuromonitoring , 2005, Clinical Neurophysiology.

[41]  C. Grimbergen,et al.  Investigation into the origin of the noise of surface electrodes , 2002, Medical and Biological Engineering and Computing.

[42]  D. W. Pashley A study of the deformation and fracture of single-crystal gold films of high strength inside an electron microscope , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[43]  Anoop C. Patil,et al.  Nontransient silk sandwich for soft, conformal bionic links , 2020 .