Two-dimensional acetylenic scaffolding: extended donor-substituted perethynylated dehydroannulenes.

Starting from (Z)-bis(N,N-diisopropylanilino)-substituted tetraethynylethene (TEE), perethynylated octadehydro[12]- and dodecadehydro[18]annulenes were prepared by oxidative Hay coupling. The dodecadehydro[18]annulene with six peripheral N,N-diisopropylanilino substituents was characterized by X-ray crystallography. Elongation of the Z-bisdeprotected TEE by Cadiot-Chodkiewicz coupling with 1-bromo-2-(triisopropylsilyl)ethyne provided a Z-configured bis(butadiyne), which after alkyne deprotection afforded under Hay coupling conditions N,N-diisopropylanilino-substituted perethynylated hexadecadehydro[20]- and tetracosadehydro[30]annulenes. The diisopropylanilino substituents enhance the properties of these unprecedented all-carbon perimeters in several distinct ways. They ensure their solubility, increase their stability, and importantly, engage in strong intramolecular charge-transfer interactions with the electron-accepting all-carbon cores, resulting in intense, bathochromically shifted charge-transfer bands in the UV/Vis spectra. The charge-transfer character of these bands was confirmed by protonation-neutralization experiments. The redox properties of the new carbon-rich chromophores were investigated by cyclic voltammetry and rotating disk voltammetry, which indicated different redox behavior for aromatic (4n+2 pi electrons) and antiaromatic (4n pi electrons) dehydroannulenes.

[1]  M. Haley,et al.  Cross‐Coupling Reactions to sp Carbon Atoms , 2008 .

[2]  F. Diederich,et al.  Donor-substituted 1,1,4,4-tetracyanobutadienes (TCBDS): new chromophores with efficient intramolecular charge-transfer interactions by atom-economic synthesis. , 2006, Chemistry.

[3]  H. Schlegel,et al.  Optical excitations in carbon architectures based on dodecadehydrotribenzo[18]annulene. , 2006, The journal of physical chemistry. A.

[4]  K. Kakiuchi,et al.  Synthesis and characterization of cyclopentadienone-annelated hexadehydrodibenzo[12]annulene , 2006 .

[5]  Keiji Hirose,et al.  A clue to elusive macrocycles: unusually facile, spontaneous polymerization of a hexagonal diethynylbenzene macrocycle. , 2006, The Journal of organic chemistry.

[6]  M. Haley,et al.  Carbon networks based on dehydrobenzoannulenes. 5. Extension of two-dimensional conjugation in graphdiyne nanoarchitectures. , 2005, The Journal of organic chemistry.

[7]  M. Haley,et al.  [2.2]paracyclophane/dehydroannulene hybrids: probing the aromaticity of the dehydro[14]annulene framework. , 2005, Organic letters.

[8]  Jingping Zhang,et al.  Heteroatom-substituted expanded radialenes: one-pot synthesis and characterization of expanded 1,3-dithiolane[n]radialenes. , 2005, The Journal of organic chemistry.

[9]  F. Diederich,et al.  Donor-substituted cyanoethynylethenes: pi-conjugation and band-gap tuning in strong charge-transfer chromophores. , 2005, Chemistry.

[10]  F. Diederich,et al.  Conjugated oligoenynes based on the diethynylethene unit. , 2005, Chemical reviews.

[11]  H. Niino,et al.  Generation and characterization of highly strained dibenzotetrakisdehydro[12]- and dibenzopentakisdehydro[14]annulenes. , 2005, The Journal of organic chemistry.

[12]  Michael M Haley,et al.  Structure-property relationships of donor/acceptor-functionalized tetrakis(phenylethynyl)benzenes and bis(dehydrobenzoannuleno)benzenes. , 2005, Journal of the American Chemical Society.

[13]  M. Iyoda,et al.  Bis(tetrathiafulvaleno)octadehydro[20]annulene with Multi-functionality , 2004 .

[14]  F. Diederich,et al.  Redox Properties of Linear and Cyclic Scaffolds Based on Di‐ and Tetraethynylethene , 2004 .

[15]  M. Nishio CH/π hydrogen bonds in crystals , 2004 .

[16]  F. Diederich,et al.  Donor‐Substituted Perethynylated Dehydroannulenes and Radiaannulenes: Acetylenic Carbon Sheets Featuring Intense Intramolecular Charge Transfer , 2004 .

[17]  T. Nishinaga,et al.  Synthesis and properties of p-benzoquinone-fused hexadehydro[18]annulenes , 2004 .

[18]  M. Haley,et al.  Let the best ring win: selective macrocycle formation through Pd-catalyzed or Cu-mediated alkyne homocoupling. , 2004, Angewandte Chemie.

[19]  T. Kawase,et al.  Onion-type complexation based on carbon nanorings and a buckminsterfullerene. , 2004, Angewandte Chemie.

[20]  S. Ott,et al.  A (bpy)2Ru-coordinated dehydro[12]annulene with exotopically fused diimine binding sites. , 2004, Chemical communications.

[21]  M. Haley,et al.  Synthetic Strategies for Dehydrobenzo[n]annulenes , 2003 .

[22]  F. Diederich,et al.  Donor-substituted peralkynylated "radiaannulenes": novel all-carbon macrocycles with an intense intramolecular charge-transfer. , 2003, Chemical communications.

[23]  A. G. Fallis,et al.  Molecular folding of C60 acetylenic cyclophanes: pi-stacking of superimposed aromatic rings. , 2003, Organic letters.

[24]  Mark D. Smith,et al.  Synthesis and structural characterization of organometallic cyclynes: novel nanoscale, carbon-rich topologies , 2003 .

[25]  Jeffrey S. Moore,et al.  Shape-persistent arylene ethynylene macrocycles: syntheses and supramolecular chemistry. , 2003, Chemical communications.

[26]  Andrew J Boydston,et al.  Diatropicity of 3,4,7,8,9,10,13,14-octadehydro[14]annulenes: a combined experimental and theoretical investigation. , 2002, The Journal of organic chemistry.

[27]  F. Diederich,et al.  Pi-electron conjugation effects in antiaromatic dehydro[12]- and aromatic dehydro[18]-annulenes. , 2002, Chemical communications.

[28]  A. Schlüter,et al.  Shape‐Persistent, Nano‐Sized Macrocycles , 2002 .

[29]  T. Nishinaga,et al.  Dehydro[12]- and -[18]annulenes fused with tetrafluorobenzene: synthesis, electronic properties, packing structures, and reactivity in the solid state. , 2002, The Journal of organic chemistry.

[30]  A. de Meijere,et al.  Completely spirocyclopropanated macrocyclic oligodiacetylenes and their permethylated analogues: preparation and properties. , 2002, Chemistry.

[31]  D. Lloyd,et al.  Annulenes, 1980–2000 , 2002 .

[32]  Mark D. Smith,et al.  Is ferrocene more aromatic than benzene , 2010 .

[33]  G. Rayfield,et al.  Nonlinear optical properties of dehydrobenzo[18]annulenes: expanded two-dimensional dipolar and octupolar NLO chromophores , 2001 .

[34]  P. Günter,et al.  Highly functionalized dimeric tetraethynylethenes and expanded radialenes: strong evidence for macrocyclic cross-conjugation. , 2001, Chemistry.

[35]  U. Bunz,et al.  Organometallic dehydro[14] annulenes containing Vollhardt's cyclobutadiene: are CpCo-complexed cyclobutadienes more aromatic then benzene? , 2001, The Journal of organic chemistry.

[36]  S. Parkin,et al.  Synthesis of a Remarkably Stable Dehydro[14]annulene. , 2001, Angewandte Chemie.

[37]  M. Haley,et al.  Carbon networks based on dehydrobenzoannulenes. 4. Synthesis of "star" and "trefoil" graphdiyne substructures via sixfold cross-coupling of hexaiodobenzene. , 2001, The Journal of organic chemistry.

[38]  R. Tykwinski,et al.  Rigid, cross-conjugated macrocycles: a cyclic alternative to 4,4'-bipyridines in supramolecular chemistry. , 2001, Organic letters.

[39]  Dage Sundholm,et al.  The aromaticity and antiaromaticity of dehydroannulenes , 2001 .

[40]  F. Diederich Carbon-rich acetylenic scaffolding: rods, rings and switches , 2001 .

[41]  Vazquez,et al.  Copper-mediated synthesis of phthalocyanino-fused Dehydro , 2000, The Journal of organic chemistry.

[42]  François Diederich,et al.  Acetylenkupplungen: eine leistungsfähige Methode für den Aufbau von Molekülen , 2000 .

[43]  Diederich,et al.  Acetylenic Coupling: A Powerful Tool in Molecular Construction. , 2000, Angewandte Chemie.

[44]  R. Tykwinski,et al.  Structural, Vibrational, and Electronic Characteristics of Enyne Macrocycles as a Function of Ring Strain , 2000 .

[45]  M. Haley,et al.  Macrocyclic Oligo(phenylacetylenes) and Oligo(phenyldiacetylenes) , 1999 .

[46]  R. Tykwinski,et al.  Expanded Radialenes: Modular Synthesis and Characterization of Cross-Conjugated Enyne Macrocycles. , 1999, Angewandte Chemie.

[47]  Rik R. Tykwinski,et al.  EXPANDIERTE RADIALENE: MODULARE SYNTHESE UND CHARAKTERISIERUNG VON GEKREUZT KONJUGIERTEN ENIN-MAKROCYCLEN , 1999 .

[48]  J. Gladysz,et al.  Appreciably bent sp carbon chains: synthesis, structure, and protonation of organometallic 1,3,5-triynes and 1,3,5,7-tetraynes of the formula (η5-C5Me5)Re(NO)(PPh3)((CC)n-p-C6H4Me) , 1999 .

[49]  Maria Cristina Burla,et al.  SIR97: a new tool for crystal structure determination and refinement , 1999 .

[50]  R. Tykwinski Cyclic alkynes–electronic behaviour as a function of ring strain , 1999 .

[51]  Yves Rubin,et al.  Polyethynylated cyclic π-systems: scaffoldings for novel two and three-dimensional carbon networks , 1999 .

[52]  Shugo Suzuki,et al.  Optimized geometries and electronic structures of graphyne and its family , 1998 .

[53]  Rik R. Tykwinski,et al.  Structure−Property Relationships in Third-Order Nonlinear Optical Chromophores , 1998 .

[54]  Rainer E. Martin,et al.  Photochemical trans–cis isomerisation of donor/acceptor-substituted (E)-hex-3-ene-1,5-diynes (1,2-diethynylethenes, DEEs) and 3,4-diethynylhex-3-ene-1,5-diynes (tetraethynylethenes, TEEs) , 1998 .

[55]  F. Diederich,et al.  Tetraethynylethene molecular scaffolding: Nonlinear optical, redox, and amphiphilic properties of donor functionalized polytriacetylene and expanded radialenes , 1997 .

[56]  Rainer E. Martin,et al.  Electronic Characteristics of Arylated Tetraethynylethenes: A Cooperative Computational and Electrochemical Investigation , 1997 .

[57]  F. Diederich,et al.  Donor/Acceptor‐Substituted Tetraethynylethenes: Systematic Assembly of Molecules for Use as Advanced Materials , 1996 .

[58]  F. Diederich,et al.  Electrochemical properties of tetraethynylethenes, fully cross-conjugated Π-chromophores, and tetraethynylethene-based carbon-rich molecular rods and dehydroannulenes , 1995 .

[59]  F. Diederich,et al.  Macrocyclic Tetraethynylethene Molecular Scaffolding: Perethynylated aromatic dodecadehydro[18]annulenes, antiaromatic octadehydro[12]annulenes, and expanded radialenes , 1995 .

[60]  F. Diederich,et al.  Tetraethynylethenes: Fully cross-conjugated π-electron chromophores and molecular scaffolds for all-carbon networks and carbon-rich nanomaterials , 1995 .

[61]  F. Diederich,et al.  Synthetic routes to the cyclo[n]carbons , 1994 .

[62]  F. Diederich,et al.  Expanded Radialenes: A Novel Class of Cross‐Conjugated Macrocycles , 1994 .

[63]  François Diederich,et al.  Expandierte Radialene: Eine neue Klasse kreuzkonjugierter Makrocyclen , 1994 .

[64]  John E. Anthony,et al.  Stabile, von Tetraethinylethen abgeleitete [12]- und [18]Annulene† , 1993 .

[65]  F. Diederich,et al.  Stable [12]‐ and [18]Annulenes Derived from Tetraethynylethene , 1993 .

[66]  François Diederich,et al.  Synthetic approaches toward molecular and polymeric carbon allotropes , 1992 .

[67]  Y. Rubin,et al.  Strategien zum Aufbau molekularer und polymerer Kohlenstoffallotrope , 1992 .

[68]  H. Karfunkel,et al.  New hypothetical carbon allotropes of remarkable stability estimated by modified neglect of diatomic overlap solid-state self-consistent field computations , 1992 .

[69]  F. Diederich,et al.  Electronic and structural properties of the cyclobutenodehydroannulenes , 1990 .

[70]  Ray H. Baughman,et al.  Structure‐property predictions for new planar forms of carbon: Layered phases containing sp2 and sp atoms , 1987 .

[71]  Y. Tohda,et al.  A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines , 1975 .

[72]  A. S. Hay Oxidative Coupling of Acetylenes. II1 , 1962 .