A Proximity Approach to Some Region-Based Theories of Space

This paper is a continuation of [VAK 01]. The notion of local connection algebra, based on the primitive notions of connection and boundedness, is introduced. It is slightly different but equivalent to Roeper's notion of region-based topology [ROE 97]. The similarity between the local proximity spaces of Leader [LEA 67] and local connection algebras is emphasized. Machinery, analogous to that introduced by Efremovi?c [EFR 51],[EFR 52], Smirnov [SMI 52] and Leader [LEA 67] for proximity and local proximity spaces, is developed. This permits us to give new proximity-type models of local connection algebras, to obtain a representation theorem for such algebras and to give a new shorter proof of the main theorem of Roeper's paper [ROE 97]. Finally, the notion of MVD-algebra is introduced. It is similar to Mormann's notion of enriched Boolean algebra [MOR 98], based on a single mereological relation of interior parthood. It is shown that MVD-algebras are equivalent to local connection algebras. This means that the connection relation and boundedness can be incorporated into one, mereological in nature relation. In this way a formalization of the Whiteheadian theory of space based on a single mereological relation is obtained.

[1]  Ivo Düntsch,et al.  Algebras of Approximating Regions , 2001, Fundam. Informaticae.

[2]  Patrick J. Hayes,et al.  The second naive physics manifesto , 1995 .

[3]  Giangiacomo Gerla Chapter 18 – Pointless Geometries , 1995 .

[4]  Dimiter Vakarelov,et al.  Information Systems, Similarity Relations and Modal Logics , 1998 .

[5]  Gunther Schmidt,et al.  A Necessary Relation Algebra for Mereotopology , 2001, Stud Logica.

[6]  Michael F. Worboys,et al.  The Algebraic Structure of Sets of Regions , 1997, COSIT.

[7]  Ivo Düntsch,et al.  A note on proximity spaces and connection based mereology , 2001, FOIS.

[8]  B. L. Clark Individuals and points. , 1985 .

[9]  Anthony G. Cohn,et al.  Qualitative Spatial Representation and Reasoning: An Overview , 2001, Fundam. Informaticae.

[10]  Bowman L. Clarke,et al.  Individuals and points , 1985, Notre Dame J. Formal Log..

[11]  T. D. Laguna Point, Line, and Surface, as Sets of Solids , 1922 .

[12]  Giangiacomo Gerla,et al.  Connection Structures: Grzegorczyk's and Whitehead's Definitions of Point , 1996, Notre Dame J. Formal Log..

[13]  Anthony G. Cohn,et al.  A Foundation for Region-based Qualitative Geometry , 2000, ECAI.

[14]  Bowman L. Clarke,et al.  A calculus of individuals based on "connection" , 1981, Notre Dame J. Formal Log..

[15]  Peter Roeper,et al.  Region-Based Topology , 1997, J. Philos. Log..

[16]  Anthony G. Cohn,et al.  Computing Transivity Tables: A Challenge For Automated Theorem Provers , 1992, CADE.

[17]  W. J. Thron Proximity structures and grills , 1973 .

[18]  Dimiter Vakarelov,et al.  Modal Logics for Local and Global Similarity Relations , 1997, Fundam. Informaticae.

[19]  Julius T. Tou,et al.  Information Systems , 1973, GI Jahrestagung.

[20]  Ivo Düntsch,et al.  A relation - algebraic approach to the region connection calculus , 2001, Theor. Comput. Sci..

[21]  Giangiacomo Gerla,et al.  Connection Structures , 1991, Notre Dame J. Formal Log..

[22]  Achille C. Varzi Parts, Wholes, and Part-Whole Relations: The Prospects of Mereotopology , 1996, Data Knowl. Eng..

[23]  Thomas Mormann Continuous lattices and Whiteheadian theory of space , 2004 .

[24]  Nelson Goodman,et al.  The calculus of individuals and its uses , 1940, Journal of Symbolic Logic.

[25]  S. Mazur,et al.  On Continuous Mappings on Cartesian Products , 1952 .

[26]  Andrzej Grzegorczyk,et al.  Axiomatizability of geometry without points , 1960, Synthese.

[27]  R. Heller,et al.  © Macmillan , 1977 .

[28]  R. Goodstein Boolean algebra , 1963 .

[29]  Ivo Düntsch,et al.  Relations Algebras in Qualitative Spatial Reasoning , 1999, Fundam. Informaticae.

[30]  S. Koppelberg,et al.  Some classes of projective Boolean algebras , 1973 .

[31]  John G. Stell,et al.  Boolean connection algebras: A new approach to the Region-Connection Calculus , 2000, Artif. Intell..

[32]  Solomon Leader,et al.  Local proximity spaces , 1967 .

[33]  Brandon Bennett,et al.  A Categorical Axiomatisation of Region-Based Geometry , 2001, Fundam. Informaticae.