Optimizing Data Volume Return for Ka-Band Deep Space Links Exploiting Short-Term Radiometeorological Model Forecast

The goal of this work is to demonstrate how the use of short-term radio-meteorological forecasts can aid the optimization of transferred data volumes from deep-space (DS) satellite payloads to Earth receiving stations. To this aim, a weather forecast (WF) numerical model is coupled with a microphysically oriented radiopropagation scheme in order to predict the atmospheric effects on Ka-band signals in DS links. A regional WFs model is exploited to obtain short-term predictions of the atmospheric state. The microphysically oriented radiopropagation scheme consists in a 3-D radiative transfer model which is used to compute the slant path attenuation and the antenna noise temperature at Ka-band in order to predict the signal-to-noise ratio at the receiving station. As a baseline, the BepiColombo mission to Mercury is chosen. Two prediction methods, statistical and maximization, are introduced and tested in two scenarios: 1) full-numerical scenario, where simulated data are used for evaluating the performances of the prediction techniques; 2) semiempirical scenario, where measured meteorological data are exploited to simulate beacon measurements in clear and rainy conditions. The results are shown in terms of received and lost data volumes and compared with benchmark scenarios. Using short-term radio-meteorological forecasts, yearly data volume return can be increased more than 20% if daily WFs, rather than monthly climatological statistics, are exploited.

[1]  J. Dudhia A Nonhydrostatic Version of the Penn State–NCAR Mesoscale Model: Validation Tests and Simulation of an Atlantic Cyclone and Cold Front , 1993 .

[2]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[3]  P. A. Watson,et al.  Atmospheric Modelling and Millimetre Wave Propagation , 1994 .

[4]  Piermario Besso,et al.  The European Space Agency's Deep-Space Antennas , 2007, Proceedings of the IEEE.

[5]  D.D. Hodges,et al.  An attenuation time series model for propagation forecasting , 2006, IEEE Transactions on Antennas and Propagation.

[6]  Johannes Benkhoff,et al.  BepiColombo—Comprehensive exploration of Mercury: Mission overview and science goals , 2010 .

[7]  Peter Krahe,et al.  Experimental ensemble forecasts of precipitation based on a convection‐resolving model , 2008 .

[8]  Frank S. Marzano,et al.  Modeling and Predicting Sky-Noise Temperature of Clear, Cloudy, and Rainy Atmosphere From X- to W-Band , 2013, IEEE Transactions on Antennas and Propagation.

[9]  松山 洋 「Statistical Methods in the Atmospheric Sciences(2nd edition), International Geophysics Series 91」, Daniel S. Wilks著, Academic Press, 2005年11月, 648頁, $94.95, ISBN978-0-12-751966-1(本だな) , 2010 .

[10]  Shervin Shambayati,et al.  Ka-Band Telemetry Operations Concept: A Statistical Approach , 2007, Proceedings of the IEEE.

[11]  R. Pielke,et al.  A comprehensive meteorological modeling system—RAMS , 1992 .

[12]  G. Powers,et al.  A Description of the Advanced Research WRF Version 3 , 2008 .

[13]  Emilio Matricciani An optimum design of deep-space downlinks affected by tropospheric attenuation , 2009, Int. J. Satell. Commun. Netw..

[14]  Frank S. Marzano,et al.  Sky-noise temperature modelling and prediction for deep space applications from X band to W band , 2010 .

[15]  John S. Kain,et al.  Convective parameterization for mesoscale models : The Kain-Fritsch Scheme , 1993 .

[16]  F. Marzano,et al.  Predicting Antenna Noise Temperature Due to Rain Clouds at Microwave and Millimeter-Wave Frequencies , 2006, IEEE Transactions on Antennas and Propagation.

[17]  M. Mercolino,et al.  Evaluation of deep space Ka-band data transfer using radiometeorological forecast models , 2014, The 8th European Conference on Antennas and Propagation (EuCAP 2014).

[18]  Emilio Matricciani Rain attenuation predicted with a two-layer rain model , 1991, Eur. Trans. Telecommun..

[19]  I. Troen,et al.  A simple model of the atmospheric boundary layer; sensitivity to surface evaporation , 1986 .

[20]  Richard K. Moore,et al.  Microwave Remote Sensing, Active and Passive , 1982 .

[21]  H. Pan,et al.  Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model , 1996 .

[22]  S. Shambayati On the benefits of short-term weather forecasting for Ka-band (32 GHz) , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[23]  Frank S. Marzano,et al.  Numerical investigation of intense rainfall effects on coherent and incoherent slant-path propagation at K-band and above , 2003 .

[24]  Joanne Simpson,et al.  Goddard Cumulus Ensemble Model. Part I: Model Description , 1993 .

[25]  G. Grell,et al.  A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5) , 1994 .

[26]  F. Marzano,et al.  Modeling antenna noise temperature due to rain clouds at microwave and Millimeter-wave frequencies , 2006, IEEE Transactions on Antennas and Propagation.

[27]  Faramaz Davarian,et al.  Deep space Ka-band link management and Mars Reconnaissance Orbiter: long-term weather statistics versus forecasting , 2004, Proceedings of the IEEE.

[28]  P. Bauer,et al.  Satellite Data Simulator Unit: A Multisensor, Multispectral Satellite Simulator Package , 2010 .

[29]  Eric A. Smith,et al.  Intercomparison of microwave radiative transfer models for precipitating clouds , 2002, IEEE Trans. Geosci. Remote. Sens..

[30]  R. Rasmussen,et al.  Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model , 1998 .