Parameter space for a dissipative Fermi–Ulam model

The parameter space for a dissipative bouncing ball model under the effect of inelastic collisions is studied. The system is described using a two-dimensional nonlinear area-contracting map. The introduction of dissipation destroys the mixed structure of phase space of the non-dissipative case, leading to the existence of a chaotic attractor and attracting fixed points, which may coexist for certain ranges of control parameters. We have computed the average velocity for the parameter space and made a connection with the parameter space based on the maximum Lyapunov exponent. For both cases, we found an infinite family of self-similar structures of shrimp shape, which correspond to the periodic attractors embedded in a large region that corresponds to the chaotic motion.

[1]  P. Glendinning,et al.  Global structure of periodicity hubs in Lyapunov phase diagrams of dissipative flows. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Jason A. C. Gallas,et al.  Dissecting shrimps: results for some one-dimensional physical models , 1994 .

[3]  Edson D. Leonel,et al.  The Feigenbaum's δ for a High Dissipative Bouncing Ball Model , 2008 .

[4]  J. Yorke,et al.  CHAOTIC ATTRACTORS IN CRISIS , 1982 .

[5]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[6]  Celso Grebogi,et al.  Bifurcation rigidity , 1999 .

[7]  Edson D. Leonel,et al.  LETTER TO THE EDITOR: A crisis in the dissipative Fermi accelerator model , 2005 .

[8]  Edward N. Lorenz,et al.  Compound windows of the Hénon-map , 2008 .

[9]  E. Ryabov,et al.  Intramolecular vibrational redistribution: from high-resolution spectra to real-time dynamics , 2012 .

[10]  Enrico Fermi,et al.  On the Origin of the Cosmic Radiation , 1949 .

[11]  Paulo C. Rech,et al.  Self-similar structures in a 2D parameter-space of an inductorless Chua's circuit , 2008 .

[12]  P V E McClintock,et al.  Dissipative area-preserving one-dimensional Fermi accelerator model. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  A Celestino,et al.  Ratchet transport and periodic structures in parameter space. , 2011, Physical review letters.

[14]  P. J. Holmes The dynamics of repeated impacts with a sinusoidally vibrating table , 1982 .

[15]  Richard M. Everson,et al.  Chaotic dynamics of a bouncing ball , 1986 .

[16]  Miguel A F Sanjuán,et al.  New developments in classical chaotic scattering , 2013, Reports on progress in physics. Physical Society.

[17]  J. A. Wheeler,et al.  Waves at walls, corners, heights: Looking for simplicity , 1995 .

[18]  E. Leonel,et al.  Boundary crisis and suppression of Fermi acceleration in a dissipative two dimensional non-integrable time-dependent billiard. , 2010, 1101.4593.

[19]  J. K. D. da Silva,et al.  Time-dependent properties of a simplified Fermi-Ulam accelerator model. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  J. Gallas,et al.  Structure of the parameter space of the Hénon map. , 1993, Physical review letters.

[21]  P V E McClintock,et al.  Fermi-Ulam accelerator model under scaling analysis. , 2004, Physical review letters.

[22]  Edson D. Leonel,et al.  A family of crisis in a dissipative Fermi accelerator model , 2007 .

[23]  Ruedi Stoop,et al.  Real-world existence and origins of the spiral organization of shrimp-shaped domains. , 2010, Physical review letters.

[24]  Edson D. Leonel,et al.  Describing Fermi acceleration with a scaling approach: The Bouncer model revisited , 2008 .

[25]  L. Pustyl'nikov,et al.  COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: Construction of periodic solutions in an infinite system of Fermi-Pasta-Ulam ordinary differential equations, stability, and KAM theory , 1995 .

[26]  J. Gallas,et al.  Periodicity hub and nested spirals in the phase diagram of a simple resistive circuit. , 2008, Physical review letters.

[27]  Marko Robnik,et al.  In-flight dissipation as a mechanism to suppress Fermi acceleration. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  Cristian Bonatto,et al.  Self-similarities in the frequency-amplitude space of a loss-modulated CO2 laser. , 2005, Physical review letters.

[29]  Edson D. Leonel,et al.  On the dynamical properties of a Fermi accelerator model , 2004 .

[30]  José,et al.  Study of a quantum fermi-acceleration model. , 1986, Physical review letters.

[31]  L. Pustyl'nikov,et al.  On Ulam's problem , 1983 .

[32]  Andrey Shilnikov,et al.  Global organization of spiral structures in biparameter space of dissipative systems with Shilnikov saddle-foci. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  J. G. Freire,et al.  Non-Shilnikov cascades of spikes and hubs in a semiconductor laser with optoelectronic feedback. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  R. H. Cohen,et al.  Fermi acceleration revisited , 1980 .

[35]  Edson D. Leonel,et al.  A hybrid Fermi–Ulam-bouncer model , 2005 .