Color image segmentation using fuzzy min-max neural networks

In this work, a new color image segmentation method, based on fuzzy min-max neural networks is presented. The proposed method is called FMMIS (fuzzy min-max neural network for image segmentation). The FMMIS method grows boxes from a set of seed pixels, to find the minimum bounded rectangle (MBR) for each object present in the images. The algorithm was tested on wood images of 10 defect categories and with images of frontal faces taken from the FERET database. The FMMIS algorithm outperformed alternative methods in terms of object detection rate, false positive detection rate, average execution time and the RUMA index. The proposed method is very fast and it may be applied to real-time image segmentation tasks.

[1]  Rolf Adams,et al.  Seeded Region Growing , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Narendra Ahuja,et al.  Detecting Faces in Images: A Survey , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  Anil K. Jain,et al.  Face Detection in Color Images , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Michael Egmont-Petersen,et al.  Image processing with neural networks - a review , 2002, Pattern Recognit..

[5]  Andrzej Bargiela,et al.  General fuzzy min-max neural network for clustering and classification , 2000, IEEE Trans. Neural Networks Learn. Syst..

[6]  Claudio A. Perez,et al.  Fuzzy Min-Max Neural Network for Image Segmentation , 2003 .

[7]  Jing Li Wang,et al.  Color image segmentation: advances and prospects , 2001, Pattern Recognit..

[8]  P. K. Simpson Fuzzy Min-Max Neural Networks-Part 1 : Classification , 1992 .

[9]  David A. Butler,et al.  An evaluation of color spaces fordetecting defects in Douglas-fir veneer , 1992 .

[10]  Hyeonjoon Moon,et al.  The FERET Evaluation Methodology for Face-Recognition Algorithms , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Patrick K. Simpson,et al.  Fuzzy min-max neural networks - Part 2: Clustering , 1993, IEEE Trans. Fuzzy Syst..

[12]  Y. J. Zhang,et al.  A survey on evaluation methods for image segmentation , 1996, Pattern Recognit..

[13]  Pa Estevez,et al.  Genetic input selection to a neural classifier for defect classification of radiata pine boards , 2003 .

[14]  Patrick K. Simpson,et al.  Fuzzy min-max neural networks. I. Classification , 1992, IEEE Trans. Neural Networks.

[15]  Charles C. Brunner,et al.  Image segmentation algorithms applied to wood defect detection , 2003 .