Universal chaotic dynamics from Krylov space

Krylov state complexity measures the spread of the wavefunction in the Krylov basis, a particular basis that is uniquely constructed using the Hamiltonian of a given physical system. Viewing each basis vector as one site, this basis naturally constitutes a one-dimensional chain, so that the state evolution can be mapped to a particle propagating on the chain, and its position is the Krylov state complexity. Based on this interpretation, we derive an Ehrenfest theorem for the Krylov complexity, which reveals its close relation to the spectrum. In particular, we find that the Krylov state complexity is directly driven by the properly normalized spectral form factor. This allows us to give an analytical expression for Krylov state complexity in random matrix theory. We also study the time evolution of the wavefunction in the Krylov basis. This provides the transition probability associated to the evolution of the initial state to the basis vector at a given site. For chaotic systems, including random matrix theories and the Sachdev-Ye-Kitaev model, we numerically observe a universal rise-slope-ramp-plateau behavior of the transition probability, with a long linear ramp. For the Gaussian unitary ensemble, we analytically explain this universal behavior for the sites located on the first half of the chain. The long linear ramp in the transition probability at each site leads to a peak in the Krylov complexity at late times. For non-chaotic systems, the transition probability shows a different behavior without the linear ramp. Our results clarify which features of the wave function time evolution in Krylov space characterize chaos.

[1]  Qi Zhou,et al.  Building Krylov complexity from circuit complexity , 2023, 2303.07343.

[2]  Pratik Nandy,et al.  On Krylov complexity in open systems: an approach via bi-Lanczos algorithm , 2023, Journal of High Energy Physics.

[3]  A. Kundu,et al.  State Dependence of Krylov Complexity in $2d$ CFTs , 2023, 2303.03426.

[4]  A. Mitra,et al.  Spread complexity as classical dilaton solutions , 2023, 2302.10489.

[5]  Keun-Young Kim,et al.  Krylov complexity in free and interacting scalar field theories with bounded power spectrum , 2022, Journal of High Energy Physics.

[6]  M. Smolkin,et al.  Krylov complexity in quantum field theory, and beyond , 2022, 2212.14429.

[7]  S. S. Haque,et al.  Krylov Complexity for Jacobi Coherent States , 2022, 2212.13758.

[8]  Souvik Banerjee,et al.  A universal approach to Krylov state and operator complexities , 2022, SciPost Physics.

[9]  D. Wisniacki,et al.  Assessing the saturation of Krylov complexity as a measure of chaos. , 2022, Physical review. E.

[10]  Pratik Nandy,et al.  Operator growth in open quantum systems: lessons from the dissipative SYK , 2022, Journal of High Energy Physics.

[11]  J. Erdmenger,et al.  From complexity geometry to holographic spacetime , 2022, Physical Review D.

[12]  Surbhi Khetrapal Chaos and operator growth in 2d CFT , 2022, Journal of High Energy Physics.

[13]  Pratik Nandy,et al.  Krylov complexity in large-$q$ and double-scaled SYK model , 2022, 2210.02474.

[14]  Shlomo S. Razamat,et al.  TF1 Snowmass Report: Quantum gravity, string theory, and black holes , 2022, 2210.01737.

[15]  V. Balasubramanian,et al.  A Tale of Two Hungarians: Tridiagonalizing Random Matrices , 2022, 2208.08452.

[16]  Henry W. Lin The bulk Hilbert space of double scaled SYK , 2022, Journal of High Energy Physics.

[17]  Nitin Gupta,et al.  Spread complexity and topological transitions in the Kitaev chain , 2022, Journal of High Energy Physics.

[18]  Pratik Nandy,et al.  Probing quantum scars and weak ergodicity breaking through quantum complexity , 2022, Physical Review B.

[19]  H. Zhai,et al.  Krylov complexity in open quantum systems , 2022, Physical Review Research.

[20]  Pratik Nandy,et al.  Operator growth and Krylov construction in dissipative open quantum systems , 2022, Journal of High Energy Physics.

[21]  E. Rabinovici,et al.  Krylov complexity from integrability to chaos , 2022, Journal of High Energy Physics.

[22]  W. Mück,et al.  Krylov complexity and orthogonal polynomials , 2022, Nuclear Physics B.

[23]  Si-Nong Liu,et al.  Quantum complexity and topological phases of matter , 2022, Physical Review B.

[24]  M. Headrick,et al.  Snowmass white paper: Quantum information in quantum field theory and quantum gravity , 2022, 2203.07117.

[25]  Pratik Nandy,et al.  Krylov complexity in saddle-dominated scrambling , 2022, Journal of High Energy Physics.

[26]  V. Balasubramanian,et al.  Quantum chaos and the complexity of spread of states , 2022, Physical Review D.

[27]  A. del Campo,et al.  Ultimate speed limits to the growth of operator complexity , 2022, Communications Physics.

[28]  E. Rabinovici,et al.  Krylov localization and suppression of complexity , 2021, Journal of High Energy Physics.

[29]  M. Flory,et al.  Exact Gravity Duals for Simple Quantum Circuits , 2021, SciPost Physics.

[30]  Cheng-Ju Lin,et al.  Krylov complexity of many-body localization: Operator localization in Krylov basis , 2021, SciPost Physics.

[31]  S. Datta,et al.  Operator growth in 2d CFT , 2021, Journal of High Energy Physics.

[32]  Dario Rosa,et al.  Operator delocalization in quantum networks , 2021, Physical Review A.

[33]  Javier M. Magán,et al.  Geometry of Krylov complexity , 2021, Physical Review Research.

[34]  J. Erdmenger,et al.  Quantum complexity as hydrodynamics , 2021, Physical Review D.

[35]  Luca V. Iliesiu,et al.  The volume of the black hole interior at late times , 2021, Journal of High Energy Physics.

[36]  Arjun Kar,et al.  Random matrix theory for complexity growth and black hole interiors , 2021, Journal of High Energy Physics.

[37]  M. Smolkin,et al.  Krylov complexity in conformal field theory , 2021, Physical Review D.

[38]  S. Chapman,et al.  Complexity for Conformal Field Theories in General Dimensions. , 2021, Physical review letters.

[39]  Arpan Bhattacharyya,et al.  Complexity from the reduced density matrix: a new diagnostic for chaos , 2020, Journal of High Energy Physics.

[40]  E. Rabinovici,et al.  Operator complexity: a journey to the edge of Krylov space , 2020, Journal of High Energy Physics.

[41]  B. Swingle,et al.  Complexity growth of operators in the SYK model and in JT gravity , 2020, Journal of High Energy Physics.

[42]  A. Gorsky,et al.  Quantum chaos as delocalization in Krylov space , 2020 .

[43]  M. Flory,et al.  Conformal field theory complexity from Euler-Arnold equations , 2020, Journal of High Energy Physics.

[44]  B. Swingle,et al.  An exponential ramp in the quadratic Sachdev-Ye-Kitaev model , 2020, 2006.15152.

[45]  L. Susskind,et al.  Complexity and momentum , 2020, Journal of High Energy Physics.

[46]  M. Flory,et al.  Geometry of complexity in conformal field theory , 2020, Physical Review Research.

[47]  J. Erdmenger,et al.  Complexity measures from geometric actions onVirasoro and Kac-Moody orbits , 2020, Journal of High Energy Physics.

[48]  J. Simón,et al.  On operator growth and emergent Poincaré symmetries , 2020, 2002.03865.

[49]  A. Dymarsky,et al.  Euclidean operator growth and quantum chaos , 2019, 1911.09672.

[50]  Henry W. Lin,et al.  Complexity geometry and Schwarzian dynamics , 2019, Journal of High Energy Physics.

[51]  W. Chemissany,et al.  Towards the web of quantum chaos diagnostics , 2019, The European Physical Journal C.

[52]  E. Rabinovici,et al.  On the evolution of operator complexity beyond scrambling , 2019, Journal of High Energy Physics.

[53]  Arpan Bhattacharyya,et al.  Chaos and complexity in quantum mechanics , 2019, Physical Review D.

[54]  Matthew DeCross,et al.  Quantum complexity of time evolution with chaotic Hamiltonians , 2019, Journal of High Energy Physics.

[55]  L. Susskind Complexity and Newton's Laws , 2019, Frontiers in Physics.

[56]  S. Shenker,et al.  JT gravity as a matrix integral , 2019, 1903.11115.

[57]  E. Altman,et al.  A Universal Operator Growth Hypothesis , 2018, Physical Review X.

[58]  M. Berkooz,et al.  Towards a full solution of the large N double-scaled SYK model , 2018, Journal of High Energy Physics.

[59]  X. Qi,et al.  Quantum epidemiology: operator growth, thermal effects, and SYK , 2018, Journal of High Energy Physics.

[60]  Henry W. Lin,et al.  Complexity of Jackiw-Teitelboim gravity , 2018, Physical Review D.

[61]  J. Eisert,et al.  Complexity and entanglement for thermofield double states , 2018, SciPost Physics.

[62]  Javier M. Magán,et al.  Quantum Computation as Gravity. , 2018, Physical review letters.

[63]  Junyu Liu Spectral form factors and late time quantum chaos , 2018, Physical Review D.

[64]  P. Narayan,et al.  Chord diagrams, exact correlators in spin glasses and black hole bulk reconstruction , 2018, Journal of High Energy Physics.

[65]  Javier M. Magán Black holes, complexity and quantum chaos , 2018, Journal of High Energy Physics.

[66]  Adam R. Brown,et al.  Falling toward charged black holes , 2018, Physical Review D.

[67]  R. Myers,et al.  Circuit complexity for free fermions , 2018, Journal of High Energy Physics.

[68]  A. Campo,et al.  Complexity functionals and complexity growth limits in continuous MERA circuits , 2018, Journal of High Energy Physics.

[69]  Daniel A. Roberts,et al.  Operator growth in the SYK model , 2018, Journal of High Energy Physics.

[70]  L. Susskind Why do Things Fall , 2018, 1802.01198.

[71]  Rifath Khan,et al.  Circuit complexity in fermionic field theory , 2018, Physical Review D.

[72]  H. Hinrichsen,et al.  Topological Complexity in AdS3/CFT2 , 2017, Fortschritte der Physik.

[73]  F. Pastawski,et al.  Toward a Definition of Complexity for Quantum Field Theory States. , 2017, Physical review letters.

[74]  R. Myers,et al.  Circuit complexity in quantum field theory , 2017, 1707.08570.

[75]  Jordan S. Cotler,et al.  Chaos, complexity, and random matrices , 2017, Journal of High Energy Physics.

[76]  T. Mertens,et al.  Solving the Schwarzian via the conformal bootstrap , 2017, 1705.08408.

[77]  Adam R. Brown,et al.  Second law of quantum complexity , 2017, 1701.01107.

[78]  Jordan S. Cotler,et al.  Black holes and random matrices , 2016, 1611.04650.

[79]  Daniel A. Roberts,et al.  Chaos and complexity by design , 2016, 1610.04903.

[80]  J. Verbaarschot,et al.  Spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model , 2016, 1610.03816.

[81]  Scott Aaronson,et al.  The Complexity of Quantum States and Transformations: From Quantum Money to Black Holes , 2016, Electron. Colloquium Comput. Complex..

[82]  J. Maldacena,et al.  Remarks on the Sachdev-Ye-Kitaev model , 2016, 1604.07818.

[83]  A. Ludwig,et al.  Sachdev-Ye-Kitaev model and thermalization on the boundary of many-body localized fermionic symmetry-protected topological states , 2016, 1602.06964.

[84]  Daniel A. Roberts,et al.  Complexity, action, and black holes , 2015, 1512.04993.

[85]  Daniel A. Roberts,et al.  Localized shocks , 2014, 1409.8180.

[86]  L. Susskind,et al.  Switchbacks and the Bridge to Nowhere , 2014, 1408.2823.

[87]  L. Susskind,et al.  Complexity and Shock Wave Geometries , 2014, 1406.2678.

[88]  L. Susskind Computational complexity and black hole horizons , 2014, 1402.5674.

[89]  S. Shenker,et al.  Multiple shocks , 2013, 1312.3296.

[90]  S. Shenker,et al.  Black holes and the butterfly effect , 2013, Journal of High Energy Physics.

[91]  John Watrous,et al.  Quantum Computational Complexity , 2008, Encyclopedia of Complexity and Systems Science.

[92]  J. Urry Complexity , 2006, Interpreting Art.

[93]  Mile Gu,et al.  Quantum Computation as Geometry , 2006, Science.

[94]  Michael A. Nielsen,et al.  A geometric approach to quantum circuit lower bounds , 2005, Quantum Inf. Comput..

[95]  A. Edelman,et al.  Matrix models for beta ensembles , 2002, math-ph/0206043.

[96]  J. Maldacena Eternal black holes in anti-de Sitter , 2001, hep-th/0106112.

[97]  S. Lloyd Ultimate physical limits to computation , 1999, Nature.

[98]  J. Maldacena The Large-N Limit of Superconformal Field Theories and Supergravity , 1997, hep-th/9711200.

[99]  T. Guhr,et al.  RANDOM-MATRIX THEORIES IN QUANTUM PHYSICS : COMMON CONCEPTS , 1997, cond-mat/9707301.

[100]  É. Brézin,et al.  Spectral form factor in a random matrix theory , 1996, cond-mat/9608116.

[101]  R. Prange The Spectral Form Factor Is Not Self-Averaging , 1996, chao-dyn/9606010.

[102]  O. Bohigas,et al.  Characterization of chaotic quantum spectra and universality of level fluctuation laws , 1984 .

[103]  C. Lanczos An iteration method for the solution of the eigenvalue problem of linear differential and integral operators , 1950 .

[104]  I. Segal Irreducible representations of operator algebras , 1947 .

[105]  C. Lacor,et al.  Chaos , 1876, Molecular Vibrations.

[106]  David M. Jackson,et al.  Chord Diagrams , 2019, CMS Books in Mathematics.

[107]  G. Giorgadze Geometry of quantum computation , 2013 .

[108]  Richard H. Price,et al.  Black Holes , 1997 .

[109]  Z. Rudnick Quantum Chaos? , 2007 .

[110]  Gerhard Müller,et al.  The recursion method : application to many-body dynamics , 1994 .

[111]  F. Dyson A Class of Matrix Ensembles , 1972 .

[112]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[113]  И.М. Гельфанд,et al.  On the imbedding of normed rings into the ring of operators in Hilbert space , 1943 .