A staggered semi-implicit hybrid FV/FE projection method for weakly compressible flows

In this article we present a novel staggered semi-implicit hybrid finite-volume/finite-element (FV/FE) method for the resolution of weakly compressible flows in two and three space dimensions. The pressure-based methodology introduced in Berm\'udez et al. 2014 and Busto et al. 2018 for viscous incompressible flows is extended here to solve the compressible Navier-Stokes equations. Instead of considering the classical system including the energy conservation equation, we replace it by the pressure evolution equation written in non-conservative form. To ease the discretization of complex spatial domains, face-type unstructured staggered meshes are considered. A projection method allows the decoupling of the computation of the density and linear momentum variables from the pressure. Then, an explicit finite volume scheme is used for the resolution of the transport diffusion equations on the dual mesh, whereas the pressure system is solved implicitly by using continuous finite elements defined on the primal simplex mesh. Consequently, the CFL stability condition depends only on the flow velocity, avoiding the severe time restrictions that might be imposed by the sound velocity in the weakly compressible regime. High order of accuracy in space and time of the transport diffusion stage is attained using a local ADER (LADER) methodology. Moreover, also the CVC Kolgan-type second order in space and first order in time scheme is considered. To prevent spurious oscillations in the presence of shocks, an ENO-based reconstruction, the minmod limiter or the Barth-Jespersen limiter are employed. To show the validity and robustness of our novel staggered semi-implicit hybrid FV/FE scheme, several benchmarks are analysed, showing a good agreement with available exact solutions and numerical reference data from low Mach numbers, up to Mach numbers of the order of unity.

[1]  Yousef Hashem Zahran,et al.  Central ADER schemes for hyperbolic conservation laws , 2008 .

[2]  Timothy J. Barth,et al.  The design and application of upwind schemes on unstructured meshes , 1989 .

[3]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[4]  M. Perić,et al.  A collocated finite volume method for predicting flows at all speeds , 1993 .

[5]  A. Majda,et al.  Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit , 1981 .

[6]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[7]  Eleuterio F. Toro,et al.  Towards Very High Order Godunov Schemes , 2001 .

[8]  Michael Dumbser,et al.  A staggered space-time discontinuous Galerkin method for the incompressible Navier-Stokes equations on two-dimensional triangular meshes , 2014, 1412.1260.

[9]  Michael Dumbser,et al.  A direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems in 3D , 2014, J. Comput. Phys..

[10]  Stéphane Clain,et al.  Improved detection criteria for the multi-dimensional optimal order detection (MOOD) on unstructured meshes with very high-order polynomials , 2012 .

[11]  Michael Dumbser,et al.  Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws , 2008, J. Comput. Phys..

[12]  Raphaël Loubère,et al.  Second-order implicit-explicit total variation diminishing schemes for the Euler system in the low Mach regime , 2017, J. Comput. Phys..

[13]  P. Lax,et al.  Systems of conservation laws , 1960 .

[14]  Claus-Dieter Munz,et al.  On Godunov-type schemes for Lagrangian gas dynamics , 1994 .

[15]  E. Toro,et al.  Solution of the generalized Riemann problem for advection–reaction equations , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  Frédéric Coquel,et al.  Local Time Stepping Applied to Implicit-Explicit Methods for Hyperbolic Systems , 2010, Multiscale Model. Simul..

[17]  Fabian Denner,et al.  Fully-coupled pressure-based finite-volume framework for the simulation of fluid flows at all speeds in complex geometries , 2017, J. Comput. Phys..

[18]  Giovanni Russo,et al.  All Mach Number Second Order Semi-implicit Scheme for the Euler Equations of Gas Dynamics , 2017, Journal of Scientific Computing.

[19]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[20]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[21]  Alexandre J. Chorin,et al.  On the Convergence of Discrete Approximations to the Navier-Stokes Equations , 1969 .

[22]  Mária Lukácová-Medvid'ová,et al.  Adaptive discontinuous evolution Galerkin method for dry atmospheric flow , 2014, J. Comput. Phys..

[23]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[24]  Jean-Luc Guermond,et al.  Entropy viscosity method for nonlinear conservation laws , 2011, J. Comput. Phys..

[25]  Jean-Antoine Désidéri,et al.  Upwind schemes for the two-dimensional shallow water equations with variable depth using unstructured meshes , 1998 .

[26]  Tae-Hyeong Yi,et al.  Time integration of unsteady nonhydrostatic equations with dual time stepping and multigrid methods , 2018, J. Comput. Phys..

[27]  Michael Dumbser,et al.  A New Family of High Order Unstructured MOOD and ADER Finite Volume Schemes for Multidimensional Systems of Hyperbolic Conservation Laws , 2014 .

[28]  C. Munz,et al.  Multiple pressure variables methods for fluid flow at all Mach numbers , 2005 .

[29]  Michael Dumbser,et al.  Arbitrary high order PNPM schemes on unstructured meshes for the compressible Navier–Stokes equations , 2010 .

[30]  M. Dumbser,et al.  The multiple pressure variables method for fluid dynamics and aeroacoustics at low Mach numbers , 2005 .

[31]  H. Guillard,et al.  On the behaviour of upwind schemes in the low Mach number limit , 1999 .

[32]  Michael Dumbser,et al.  ADER Schemes for Nonlinear Systems of Stiff Advection–Diffusion–Reaction Equations , 2011, J. Sci. Comput..

[33]  Mária Lukácová-Medvid'ová,et al.  Asymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation , 2017, J. Comput. Phys..

[34]  C. Parés Numerical methods for nonconservative hyperbolic systems: a theoretical framework. , 2006 .

[35]  Alfredo Bermúdez,et al.  A projection hybrid finite volume/element method for low-Mach number flows , 2014, J. Comput. Phys..

[36]  R. Klein Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics , 1995 .

[37]  Claus-Dieter Munz,et al.  A Weakly Asymptotic Preserving Low Mach Number Scheme for the Euler Equations of Gas Dynamics , 2014, SIAM J. Sci. Comput..

[38]  Michael Dumbser,et al.  A staggered space-time discontinuous Galerkin method for the three-dimensional incompressible Navier-Stokes equations on unstructured tetrahedral meshes , 2016, J. Comput. Phys..

[39]  Michael Dumbser,et al.  A staggered semi-implicit discontinuous Galerkin method for the two dimensional incompressible Navier-Stokes equations , 2014, Appl. Math. Comput..

[40]  Felix Rieper,et al.  A low-Mach number fix for Roe's approximate Riemann solver , 2011, J. Comput. Phys..

[41]  J. L. Ferrín,et al.  A Projection Hybrid Finite Volume-ADER/Finite Element Method for Turbulent Navier-Stokes , 2017 .

[42]  Michael Dumbser,et al.  A staggered semi-implicit spectral discontinuous Galerkin scheme for the shallow water equations , 2013, Appl. Math. Comput..

[43]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[44]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[45]  R. Knikker A comparative study of high‐order variable‐property segregated algorithms for unsteady low Mach number flows , 2011 .

[46]  R. T. Cheng,et al.  SEMI-IMPLICIT FINITE DIFFERENCE METHODS FOR THREE-DIMENSIONAL SHALLOW WATER FLOW , 1992 .

[47]  Artur Tyliszczak,et al.  High-order compact difference algorithm on half-staggered meshes for low Mach number flows , 2016 .

[48]  D. Balsara,et al.  A divergence‐free semi‐implicit finite volume scheme for ideal, viscous, and resistive magnetohydrodynamics , 2018, International journal for numerical methods in fluids.

[49]  Michael Dumbser,et al.  FORCE schemes on unstructured meshes I: Conservative hyperbolic systems , 2009, J. Comput. Phys..

[50]  Phillip Colella,et al.  A HIGH-ORDER FINITE-VOLUME METHOD FOR CONSERVATION LAWS ON LOCALLY REFINED GRIDS , 2011 .

[51]  Sofiane Khelladi,et al.  A high-order density-based finite volume method for the computation of all-speed flows , 2016 .

[52]  Armin Iske,et al.  Adaptive ADER Methods Using Kernel-Based Polyharmonic Spline WENO Reconstruction , 2010, SIAM J. Sci. Comput..

[53]  Eleuterio F. Toro,et al.  Flux splitting schemes for the Euler equations , 2012 .

[54]  Yoko Takakura,et al.  Direct-expansion forms of ADER schemes for conservation laws and their verification , 2006, J. Comput. Phys..

[55]  U. Ghia,et al.  High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method , 1982 .

[56]  T. Sonar,et al.  Asymptotic adaptive methods for multi-scale problems in fluid mechanics , 2001 .

[57]  Gianluigi Rozza,et al.  POD-Galerkin reduced order methods for combined Navier-Stokes transport equations based on a hybrid FV-FE solver , 2018, Comput. Math. Appl..

[58]  Michael Dumbser,et al.  A simple robust and accurate a posteriori sub-cell finite volume limiter for the discontinuous Galerkin method on unstructured meshes , 2016, J. Comput. Phys..

[59]  Roland Glowinski,et al.  MODELLING AND NUMERICAL SIMULATION OF LOW-MACH-NUMBER COMPRESSIBLE FLOWS , 1996 .

[60]  M. J. Castro,et al.  ADER schemes on unstructured meshes for nonconservative hyperbolic systems: Applications to geophysical flows , 2009 .

[61]  Michael Dumbser,et al.  High Order ADER Schemes for Continuum Mechanics , 2020, Frontiers in Physics.

[62]  Vincenzo Casulli,et al.  A semi‐implicit numerical method for the free‐surface Navier–Stokes equations , 2014 .

[63]  Michael Dumbser,et al.  A pressure-based semi-implicit space-time discontinuous Galerkin method on staggered unstructured meshes for the solution of the compressible Navier-Stokes equations at all Mach numbers , 2016, J. Comput. Phys..

[64]  Chi-Wang Shu Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws , 1998 .

[65]  Panagiotis Tsoutsanis,et al.  Low-Mach number treatment for Finite-Volume schemes on unstructured meshes , 2018, Appl. Math. Comput..

[66]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[67]  Stéphane Clain,et al.  The MOOD method in the three-dimensional case: Very-High-Order Finite Volume Method for Hyperbolic Systems. , 2012 .

[68]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[69]  Michael Dumbser,et al.  Linearized acoustic perturbation equations for low Mach number flow with variable density and temperature , 2007, J. Comput. Phys..

[70]  Eleuterio F. Toro,et al.  A projection hybrid high order finite volume/finite element method for incompressible turbulent flows , 2018, J. Comput. Phys..

[71]  E. Turkel,et al.  PRECONDITIONING TECHNIQUES IN COMPUTATIONAL FLUID DYNAMICS , 1999 .

[72]  F. Harlow,et al.  Numerical Calculation of Time‐Dependent Viscous Incompressible Flow of Fluid with Free Surface , 1965 .

[73]  Michael Dumbser,et al.  A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..

[74]  Eleuterio F. Toro,et al.  Derivative Riemann solvers for systems of conservation laws and ADER methods , 2006, J. Comput. Phys..

[75]  Michael Dumbser,et al.  Well-balanced Arbitrary-Lagrangian-Eulerian finite volume schemes on moving nonconforming meshes for the Euler equations of gas dynamics with gravity , 2017, 1712.07765.

[76]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[77]  C. Munz,et al.  The extension of incompressible flow solvers to the weakly compressible regime , 2003 .

[78]  Donald Greenspan,et al.  Pressure method for the numerical solution of transient, compressible fluid flows , 1984 .

[79]  Francis X. Giraldo,et al.  Comparison between adaptive and uniform discontinuous Galerkin simulations in dry 2D bubble experiments , 2013, J. Comput. Phys..

[80]  H. Schlichting Boundary Layer Theory , 1955 .

[81]  Eleuterio F. Toro,et al.  Design and analysis of ADER-type schemes for model advection-diffusion-reaction equations , 2016, J. Comput. Phys..

[82]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[83]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[84]  Florian Bernard,et al.  Linearly implicit all Mach number shock capturing schemes for the Euler equations , 2019, J. Comput. Phys..

[85]  V. Rusanov,et al.  The calculation of the interaction of non-stationary shock waves and obstacles , 1962 .

[86]  Y. Mor-Yossef AUFSR+: Low Mach number enhancement of the AUFSR scheme , 2016 .

[87]  J. M. Thomas,et al.  Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .

[88]  Eli Turkel,et al.  Preconditioning and the Limit to the Incompressible Flow Equations , 1993 .

[89]  R. Hartmann,et al.  Adaptive discontinuous Galerkin finite element methods for the compressible Euler equations , 2002 .

[90]  Stéphane Clain,et al.  A high-order finite volume method for systems of conservation laws - Multi-dimensional Optimal Order Detection (MOOD) , 2011, J. Comput. Phys..

[91]  Eleuterio F. Toro,et al.  ADER schemes for three-dimensional non-linear hyperbolic systems , 2005 .

[92]  A. Oliva,et al.  Numerical analysis of conservative unstructured discretisations for low Mach flows , 2017 .

[93]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[94]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[95]  Chao Yan,et al.  Effective low-Mach number improvement for upwind schemes , 2018, Comput. Math. Appl..

[96]  Eleuterio F. Toro,et al.  Reformulations for general advection-diffusion-reaction equations and locally implicit ADER schemes , 2014, J. Comput. Phys..

[97]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[98]  Michael Dumbser,et al.  Building Blocks for Arbitrary High Order Discontinuous Galerkin Schemes , 2006, J. Sci. Comput..

[99]  Michael Dumbser,et al.  High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids , 2015, J. Comput. Phys..

[100]  Lilia Krivodonova,et al.  Limiters for high-order discontinuous Galerkin methods , 2007, J. Comput. Phys..

[101]  Stéphane Clain,et al.  The Multidimensional Optimal Order Detection method in the three‐dimensional case: very high‐order finite volume method for hyperbolic systems , 2013 .

[102]  M. J. Castro,et al.  FORCE schemes on unstructured meshes II: Non-conservative hyperbolic systems , 2010 .

[103]  S. Osher,et al.  Upwind difference schemes for hyperbolic systems of conservation laws , 1982 .

[104]  Michael Dumbser,et al.  Efficient high order accurate staggered semi-implicit discontinuous Galerkin methods for natural convection problems , 2019, Computers & Fluids.

[105]  Christian Klingenberg,et al.  An all speed second order IMEX relaxation scheme for the Euler equations , 2019, Communications in Computational Physics.

[106]  A. Majda,et al.  Compressible and incompressible fluids , 1982 .

[107]  M. Elena Vázquez-Cendón Solving Hyperbolic Equations with Finite Volume Methods , 2015 .

[108]  Saray Busto Ulloa Contributions to the numerical solution of heterogeneous fluid mechanics models , 2018 .

[109]  Pierre Degond,et al.  An Asymptotic-Preserving all-speed scheme for the Euler and Navier-Stokes equations , 2011, J. Comput. Phys..

[110]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[111]  Andreas Meister,et al.  Asymptotic Single and Multiple Scale Expansions in the Low Mach Number Limit , 1999, SIAM J. Appl. Math..

[112]  L. Cea,et al.  Analysis of a new Kolgan-type scheme motivated by the shallow water equations , 2012 .

[113]  P. Degond,et al.  All speed scheme for the low Mach number limit of the isentropic Euler equations , 2009, 0908.1929.

[114]  Carlos Parés,et al.  Two-dimensional sediment transport models in shallow water equations. A second order finite volume approach on unstructured meshes , 2009 .

[115]  Emmanuel Motheau,et al.  A high-order numerical algorithm for DNS of low-Mach-number reactive flows with detailed chemistry and quasi-spectral accuracy , 2016, J. Comput. Phys..

[116]  Gabriella Puppo,et al.  An Asymptotic-Preserving All-Speed Scheme for Fluid Dynamics and Nonlinear Elasticity , 2019, SIAM J. Sci. Comput..

[117]  John B. Bell,et al.  A hybrid adaptive low-Mach number/compressible method: Euler equations , 2017, J. Comput. Phys..

[118]  Jae Eun Lee,et al.  Preconditioned HLLE Method for Flows at All Mach Numbers , 2006 .