Robust Principal Component Analysis Based on Low-Rank and Block-Sparse Matrix Decomposition

[1]  John Wright,et al.  RASL: Robust Alignment by Sparse and Low-Rank Decomposition for Linearly Correlated Images , 2012, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[3]  Shuicheng Yan,et al.  Image tag refinement towards low-rank, content-tag prior and error sparsity , 2010, ACM Multimedia.

[4]  Wei Wang,et al.  Robust traffic anomaly detection with principal component pursuit , 2010, CoNEXT '10 Student Workshop.

[5]  J.-C. Pesquet,et al.  A Douglas–Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery , 2007, IEEE Journal of Selected Topics in Signal Processing.

[6]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[8]  A. Willsky,et al.  Sparse and low-rank matrix decompositions , 2009 .

[9]  Yi Ma,et al.  TILT: Transform Invariant Low-Rank Textures , 2010, ACCV 2010.

[10]  Xiaodong Li,et al.  Stable Principal Component Pursuit , 2010, 2010 IEEE International Symposium on Information Theory.

[11]  John Wright,et al.  Decomposing background topics from keywords by principal component pursuit , 2010, CIKM.

[12]  Yongtian Wang,et al.  Robust Photometric Stereo via Low-Rank Matrix Completion and Recovery , 2010, ACCV.

[13]  Mohamed-Jalal Fadili,et al.  Inpainting and Zooming Using Sparse Representations , 2009, Comput. J..

[14]  G. Sapiro,et al.  A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.