Parameterized algorithms for d-Hitting Set: The weighted case

We are going to analyze search tree algorithms for Weightedd-Hitting Set. Although the algorithms that we develop are fairly simple, their analysis is technically involved. We compare the weighted case with the previously analyzed unweighted one, exhibiting that the advantage of the unweighted case dwindles with growing d.

[1]  Ján Plesník,et al.  Equivalence between the minimum covering problem and the maximum matching problem , 1984, Discret. Math..

[2]  Henning Fernau Parameterized algorithmics for linear arrangement problems , 2008, Discret. Appl. Math..

[3]  Raymond Reiter,et al.  Characterizing Diagnoses and Systems , 1992, Artif. Intell..

[4]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[5]  David Eppstein,et al.  Quasiconvex analysis of backtracking algorithms , 2003, SODA '04.

[6]  Henning Fernau,et al.  Searching Trees: An Essay , 2009, TAMC.

[7]  Henning Fernau,et al.  Two-Layer Planarization: Improving on Parameterized Algorithmics , 2005, J. Graph Algorithms Appl..

[8]  Giuseppe Liotta,et al.  A Fixed-Parameter Approach to 2-Layer Planarization , 2001, Algorithmica.

[9]  Magnus Wahlström,et al.  Exact algorithms for finding minimum transversals in rank-3 hypergraphs , 2004, J. Algorithms.

[10]  Rolf Niedermeier,et al.  An efficient fixed-parameter algorithm for 3-Hitting Set , 2003, J. Discrete Algorithms.

[11]  Weijia Jia,et al.  Vertex Cover: Further Observations and Further Improvements , 2001, J. Algorithms.

[12]  Henning Fernau A Top-Down Approach to Search-Trees: Improved Algorithmics for 3-Hitting Set , 2008, Algorithmica.

[13]  Magnus Wahlström,et al.  Algorithms, measures and upper bounds for satisfiability and related problems , 2007 .

[14]  Roderic D. M. Page,et al.  Tangled trees : phylogeny, cospeciation, and coevolution , 2003 .

[15]  David Eppstein,et al.  Quasiconvex analysis of multivariate recurrence equations for backtracking algorithms , 2006, TALG.

[16]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[17]  Rolf Niedermeier,et al.  Fixed-parameter tractability results for feedback set problems in tournaments , 2010, J. Discrete Algorithms.

[18]  Fabrizio Grandoni,et al.  Measure and Conquer: Domination - A Case Study , 2005, ICALP.

[19]  Rolf Niedermeier,et al.  On Efficient Fixed Parameter Algorithms for WEIGHTED VERTEX COVER , 2000, ISAAC.

[20]  Saket Saurabh,et al.  Improved Exact Exponential Algorithms for Vertex Bipartization and Other Problems , 2005, ICTCS.

[21]  Saket Saurabh,et al.  Parameterized algorithms for feedback set problems and their duals in tournaments , 2006, Theor. Comput. Sci..

[22]  Ján Plesník,et al.  Constrained Weighted Matchings and Edge Coverings in Graphs , 1999, Discret. Appl. Math..

[23]  Michael Kaufmann,et al.  Comparing trees via crossing minimization , 2010, J. Comput. Syst. Sci..

[24]  Henning Fernau,et al.  Parameterized algorithms for d-Hitting Set: The weighted case , 2006, Theor. Comput. Sci..