Chapter 30 Potentiometric electronic tongues applied in ion multidetermination

Publisher Summary This chapter discusses the application of electronic tongues as analytical systems for multidetermination of species in batch conditions and also integrated in flow injection analysis and sequential injection analysis systems. The preferred chemometrics tool to model its response—artificial neural networks (ANNs)—is also discussed in the chapter. Various precautions for its use together with options and configurations have been described. The ways employed to check the goodness of fit of a developed response model have also been explained. The electronic tongue concept has been successfully proved to be a feasible alternative for multiple analyte determinations, specially suited for monitoring applications, where it can provide real-time multicomponent information, simultaneously compensating matrix effects when used in a dynamic manner. Multicomponent determination is one of the possibilities brought by electronic tongues. Other applications are in its qualitative application, where a classification of sample varieties is one of the possibilities, but where assessment of non-directly or non-easily quantifiable aspects, such as aging or perception can be also attempted.

[1]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[2]  Larisa Lvova,et al.  Chemical sensor array for multicomponent analysis of biological liquids , 1999 .

[3]  J. Bartrolí,et al.  Flow-through tubular ion-selective electrodes responsive to anionic surfactants for flow-injection analysis , 1995 .

[4]  H. Nam,et al.  Multicomponent analysis of Korean green tea by means of disposable all-solid-state potentiometric electronic tongue microsystem , 2003 .

[5]  Andrew D. Ellington,et al.  Solution-based analysis of multiple analytes by a sensor array: toward the development of an electronic tongue , 1998 .

[6]  David M. Skapura,et al.  Neural networks - algorithms, applications, and programming techniques , 1991, Computation and neural systems series.

[7]  Dermot Diamond Principles of chemical and biological sensors , 1998 .

[8]  G. J. Moody,et al.  Optimisation of poly(vinyl chloride) matrix membrane ion-selective electrodes for ammonium ions , 1988 .

[9]  Alisa Rudnitskaya,et al.  Cross-sensitivity evaluation of chemical sensors for electronic tongue: determination of heavy metal ions , 1997 .

[10]  Júlia M C S Magalhães,et al.  Array of potentiometric sensors for the analysis of creatinine in urine samples. , 2002, The Analyst.

[11]  R. Cattrall Chemical Sensors , 1997 .

[12]  K. Persaud Electronic gas and odour detectors that mimic chemoreception in animals , 1992 .

[13]  Yoshio Umezawa,et al.  CRC Handbook of Ion Selective Electrodes: Selectivity Coefficients , 1990 .

[14]  Ingemar Lundström,et al.  2nd Workshop of the Second Network on Artificial Olfactory Sensing (NOSE II) , 2004 .

[15]  James L. McClelland,et al.  Parallel distributed processing: explorations in the microstructure of cognition, vol. 1: foundations , 1986 .

[16]  H. Troy Nagle,et al.  Handbook of Machine Olfaction: Electronic Nose Technology , 2003 .

[17]  Alisa Rudnitskaya,et al.  Chapter 10 Electronic tongues: new analytical perspective for chemical sensors , 2003 .

[18]  Y. Vlasov,et al.  Non-selective chemical sensors in analytical chemistry: from “electronic nose” to “electronic tongue” , 1998 .

[19]  Alisa Rudnitskaya,et al.  A flow injection system based on chalcogenide glass sensors for the determination of heavy metals , 2000 .

[20]  Fabrizio Davide,et al.  Tasting of beverages using an electronic tongue , 1997 .

[21]  S. D. Jong,et al.  Handbook of Chemometrics and Qualimetrics , 1998 .

[22]  S. Alegret,et al.  Sequential injection system with higher dimensional electrochemical sensor signals Part 2. Potentiometric e-tongue for the determination of alkaline ions. , 2005, Talanta.

[23]  Marystela Ferreira,et al.  High-performance taste sensor made from Langmuir-Blodgett films of conducting polymers and a ruthenium complex. , 2003, Analytical chemistry.

[24]  J. Gardner,et al.  Miniature taste sensing system based on dual SH-SAW sensor device: an electronic tongue , 2004 .

[25]  Claire E. Lenehan,et al.  Sequential injection analysis: an alternative approach to process analytical chemistry , 1999 .

[26]  F Despagne,et al.  Neural networks in multivariate calibration. , 1998, The Analyst.

[27]  Salvador Alegret,et al.  Potentiometric bioelectronic tongue for the analysis of urea and alkaline ions in clinical samples. , 2007, Biosensors & bioelectronics.

[28]  Eduardo Ruiz-Hitzky,et al.  Case-based reasoning (CBR) for multicomponent analysis using sensor arrays: application to water quality evaluation. , 2002, The Analyst.

[29]  P. Ciosek,et al.  Polymeric membrane ion-selective and cross-sensitive electrode-based electronic tongue for qualitative analysis of beverages. , 2004, The Analyst.

[30]  H. Nam,et al.  All-solid-state electronic tongue and its application for beverage analysis , 2002 .

[31]  F. Winquist,et al.  Compression of electronic tongue data based on voltammetry — a comparative study , 2001 .

[32]  C. Di Natale,et al.  Nonspecific sensor arrays ("electronic tongue") for chemical analysis of liquids (IUPAC Technical Report) , 2005 .

[33]  Lorenzo Leija,et al.  Use of an Electronic Tongue Based on All‐Solid‐State Potentiometric Sensors for the Quantitation of Alkaline Ions , 2005 .

[34]  Matthias Otto,et al.  Model studies on multiple channel analysis of free magnesium, calcium, sodium, and potassium at physiological concentration levels with ion-selective electrodes , 1985 .

[35]  Conrad Bessant,et al.  A liquid handling system for the automated acquisition of data for training, validating and testing calibration models , 2003 .

[36]  A. Merlos,et al.  Multi-sensor array used as an “electronic tongue” for mineral water analysis , 2006 .

[37]  M. del Valle,et al.  Automated SIA e‐Tongue Employing a Voltammetric Biosensor Array for the Simultaneous Determination of Glucose and Ascorbic Acid , 2006 .

[38]  Bruce R. Kowalski,et al.  Distinguishing between process upsets and sensor malfunctions using sensor redundancy , 1999 .

[39]  Kiyoshi Toko,et al.  RETRACTED: Electronic tongue , 1998 .

[40]  Robert W. Cattrall,et al.  The application of a chemical sensor array detector in ion chromatography for the determination of Na+, NH4+, K+, Mg2+ and Ca2+ in water samples , 1998 .

[41]  Bruce R. Kowalski,et al.  Nonlinear calibration using projection pursuit regression: application to an array of ion-selective electrodes , 1988 .

[42]  A. Legin,et al.  Differentiation of four Aspergillus species and one Zygosaccharomyces with two electronic tongues based on different measurement techniques. , 2005, Journal of biotechnology.

[43]  Roberto Paolesse,et al.  Porphyrin-based array of cross-selective electrodes for analysis of liquid samples , 2003 .

[44]  Antonella Macagnano,et al.  Multicomponent analysis on polluted waters by means of an electronic tongue , 1997 .

[45]  I. Lundström,et al.  A hybrid electronic tongue. , 2000 .

[46]  J. Saurina,et al.  Potentiometric sensor array for the determination of lysine in feed samples using multivariate calibration methods , 2001, Fresenius' journal of analytical chemistry.

[47]  S. Alegret,et al.  Determination of phenolic compounds by a polyphenol oxidase amperometric biosensor and artificial neural network analysis. , 2005, Biosensors & bioelectronics.

[48]  Miloslav Pravda,et al.  ROLE OF CHEMOMETRICS FOR ELECTROCHEMICAL SENSORS , 2002 .

[49]  Roberto Paolesse,et al.  Electronic tongue based on an array of metallic potentiometric sensors. , 2006, Talanta.

[50]  A Rudnitskaya,et al.  Multicomponent analysis of fermentation growth media using the electronic tongue (ET). , 2004, Talanta.

[51]  L. Leija,et al.  Application of the wavelet transform coupled with artificial neural networks for quantification purposes in a voltammetric electronic tongue , 2006 .

[52]  K. Toko,et al.  A taste sensor , 1998 .

[53]  M. Cortina,et al.  A sequential injection electronic tongue employing the transient response from potentiometric sensors for anion multidetermination , 2006, Analytical and bioanalytical chemistry.

[54]  Alisa Rudnitskaya,et al.  Electronic tongue for pharmaceutical analytics: quantification of tastes and masking effects , 2004, Analytical and bioanalytical chemistry.

[55]  A. Bos,et al.  Processing of signals from an ion-elective electrode array by a neural network , 1990 .

[56]  S. B. Savvin,et al.  Chemical sensors: definitions and classification , 1991 .

[57]  Bruce R. Kowalski,et al.  Sparingly selective ion-selective electrode arrays for multicomponent analysis , 1988 .

[58]  Antonella Macagnano,et al.  Electronic nose and electronic tongue integration for improved classification of clinical and food samples , 2000 .

[59]  W. E. van der Linden,et al.  Data processing for amperometric signals , 1995 .

[60]  M. del Valle,et al.  Use of sequential injection analysis to construct an electronic-tongue: application to multidetermination employing the transient response of a potentiometric sensor array. , 2007, Analytica chimica acta.

[61]  Alisa Rudnitskaya,et al.  Methods for Multivariate Calibrations for Processing of the Dynamic Response of a Flow-Injection Multiple-Sensor System , 2005 .

[62]  P. Hernández,et al.  An electronic tongue using potentiometric all-solid-state PVC-membrane sensors for the simultaneous quantification of ammonium and potassium ions in water , 2003, Analytical and bioanalytical chemistry.

[63]  K. Tohda,et al.  Ion-selective electrodes based on natural carboxylic polyether antibiotics. , 1988, Analytical chemistry.

[64]  S. Alegret,et al.  Sequential injection system with higher dimensional electrochemical sensor signals Part 1. Voltammetric e-tongue for the determination of oxidizable compounds. , 2005, Talanta.

[65]  Albert Bos,et al.  Tutorial review—Data processing by neural networks in quantitative chemical analysis , 1993 .

[66]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[67]  Salvador Alegret,et al.  Application of a potentiometric electronic tongue as a classification tool in food analysis. , 2005, Talanta.

[68]  M. Valle,et al.  Automated SIA System Using an Array of Potentiometric Sensors for Determining Alkaline-Earth Ions in Water , 2007 .

[69]  J W Gardner and P N Bartlett,et al.  Electronic Noses: Principles and Applications , 1999 .

[70]  D. Massart,et al.  Halide ion-selective electrode array calibration. , 1999, Talanta.

[71]  P. Ciosek,et al.  The recognition of beer with flow-through sensor array based on miniaturized solid-state electrodes. , 2006, Talanta.

[72]  Gary D. Christian,et al.  Sequential injection analysis for electrochemical measurements and process analysis , 1994 .

[73]  J. Saurina,et al.  Determination of calcium and total hardness in natural waters using a potentiometric sensor array , 2002 .

[74]  C. Natale,et al.  Electronic tongue: new analytical tool for liquid analysis on the basis of non-specific sensors and methods of pattern recognition , 2000 .

[75]  Hugh M. Cartwright,et al.  Applications of artificial intelligence in chemistry , 1993 .

[76]  Salvador Alegret,et al.  Virtual Instrument for an Automated Potentiometric e-Tongue Employing the SIA Technique , 2005, Sensors (Basel, Switzerland).

[77]  I. Lundström,et al.  Electronic tongues for environmental monitoring based on sensor arrays and pattern recognition: a review , 2001 .

[78]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[79]  Patrycja Ciosek,et al.  The analysis of sensor array data with various pattern recognition techniques , 2006 .

[80]  E. Llobet,et al.  An electronic tongue design for the qualitative analysis of natural waters , 2005 .

[81]  Lorenzo Leija,et al.  Determination of Ammonium Ion Employing an Electronic Tongue Based on Potentiometric Sensors , 2003 .

[82]  Dermot Diamond,et al.  Modeling of potentiometric electrode arrays for multicomponent analysis , 1991 .

[83]  M. DeGrandpre,et al.  Redundant chemical sensors for calibration-impossible applications. , 2001, Talanta.

[84]  Ingemar Lundström,et al.  The combination of an electronic tongue and an electronic nose , 1999 .

[85]  E. G. Kulapina,et al.  Separate detection of homologous surfactants by means of solid-contact unmodified and modified with molecular sieves potentiometric sensors. , 2005, Talanta.

[86]  Kiyoshi Toko,et al.  Biomimetic Sensor Technology , 2000 .

[87]  H. Lüth,et al.  Development of multisensor systems based on chalcogenide thin film chemical sensors for the simultaneous multicomponent analysis of metal ions in complex solutions , 2001 .

[88]  Daniel Svozil,et al.  Introduction to multi-layer feed-forward neural networks , 1997 .

[89]  Salvador Alegret,et al.  A flow-injection electronic tongue based on potentiometric sensors for the determination of nitrate in the presence of chloride , 2004 .

[90]  Rafaela Cáceres,et al.  Application of a potentiometric electronic tongue to fertigation strategy in greenhouse cultivation , 2007 .