On the neural network calculation of the Lamé coefficients through eigenvalues of the elasticity operator
暂无分享,去创建一个
[1] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[2] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[3] B. Mercier,et al. Eigenvalue approximation by mixed and hybrid methods , 1981 .
[4] James J. Carroll,et al. Approximation of nonlinear systems with radial basis function neural networks , 2001, IEEE Trans. Neural Networks.
[5] Carlos J. S. Alves,et al. Inverse scattering for elastic plane cracks , 1999 .
[6] M. Fortin,et al. Mixed Finite Element Methods and Applications , 2013 .
[7] Habib Ammari,et al. Complete Asymptotic Expansions of Solutions of the System of Elastostatics in the Presence of an Inclusion of Small Diameter and Detection of an Inclusion , 2002 .
[8] Mark K. Hinders,et al. Ultrasonic Lamb wave tomography , 2002 .
[9] Morten Hjorth-Jensen. Eigenvalue Problems , 2021, Explorations in Numerical Analysis.
[10] Huy Duong Bui,et al. Sur l'identification de fissures planes via le concept d'écart à la réciprocité en élasticité , 1997 .
[11] Daniele Boffi,et al. Finite element approximation of eigenvalue problems , 2010, Acta Numerica.
[12] Andrei Constantinescu,et al. On the inversion of subsurface residual stresses from surface stress measurements , 1994 .
[13] Tomaso A. Poggio,et al. Regularization Theory and Neural Networks Architectures , 1995, Neural Computation.