Analytical model and experimental investigation of electromagnetic tube compression with axi-symmetric coil and field shaper

Abstract In this study, a computationally cost effective, pure analytical model was developed for a multi-turn, axisymmetric coil with field shaper to predict the magnetic pressure and velocity during electromagnetic tube compression. This model is electro-magnetic-mechanically coupled with tube position affecting the magnetic field generated at each time increment. The mechanics-based analytical approach is different than past research and includes experimentally determined coupling coefficients between the coil, field shaper, and tube. To validate the analytical model, experimental tests with Photon Doppler Velocimetry (PDV) were conducted. The results show reasonably good agreement between the analytical and experimental results.