A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model

This paper presents a new topology optimization approach based on the so-called Moving Morphable Components (MMC) solution framework. The proposed method improves several weaknesses of the previous approach (e.g., Guo et al. in J Appl Mech 81:081009, 2014a) in the sense that it can not only allow for components with variable thicknesses but also enhance the numerical solution efficiency substantially. This is achieved by constructing the topological description functions of the components appropriately, and utilizing the ersatz material model through projecting the topological description functions of the components. Numerical examples demonstrate the effectiveness of the proposed approach. In order to help readers understand the essential features of this approach, a 188 line Matlab implementation of this approach is also provided.

[1]  Gengdong Cheng,et al.  Recent development in structural design and optimization , 2010 .

[2]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[3]  M. Wang,et al.  A new level set method for systematic design of hinge-free compliant mechanisms , 2008 .

[4]  O. Sigmund,et al.  Topology optimization approaches , 2013, Structural and Multidisciplinary Optimization.

[5]  D. Tortorelli,et al.  A geometry projection method for continuum-based topology optimization with discrete elements , 2015 .

[6]  Michael Yu Wang,et al.  Shape feature control in structural topology optimization , 2008, Comput. Aided Des..

[7]  O. Sigmund,et al.  Minimum length scale in topology optimization by geometric constraints , 2015 .

[8]  Takayuki Yamada,et al.  Matlab code for a level set-based topology optimization method using a reaction diffusion equation , 2014, Structural and Multidisciplinary Optimization.

[9]  J. Petersson,et al.  Slope constrained topology optimization , 1998 .

[10]  Xu Guo,et al.  Explicit feature control in structural topology optimization via level set method , 2014 .

[11]  Krishnan Suresh,et al.  A 199-line Matlab code for Pareto-optimal tracing in topology optimization , 2010 .

[12]  K. Svanberg The method of moving asymptotes—a new method for structural optimization , 1987 .

[13]  T. Shi,et al.  Constraints of distance from boundary to skeleton: For the control of length scale in level set based structural topology optimization , 2015 .

[14]  Xu Guo,et al.  Explicit layout control in optimal design of structural systems with multiple embedding components , 2015 .

[15]  James K. Guest,et al.  Topology optimization with multiple phase projection , 2009 .

[16]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[17]  Ole Sigmund,et al.  Manufacturing tolerant topology optimization , 2009 .

[18]  James K. Guest,et al.  Optimizing inclusion shapes and patterns in periodic materials using Discrete Object Projection , 2014 .

[19]  Xu Guo,et al.  An explicit length scale control approach in SIMP-based topology optimization , 2014 .

[20]  G. Michailidis Manufacturing Constraints and Multi-Phase Shape and Topology Optimization via a Level-Set Method , 2014 .

[21]  Ole Sigmund,et al.  On projection methods, convergence and robust formulations in topology optimization , 2011, Structural and Multidisciplinary Optimization.

[22]  Jian Zhang,et al.  Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons , 2016 .

[23]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[24]  James K. Guest,et al.  Achieving minimum length scale in topology optimization using nodal design variables and projection functions , 2004 .

[25]  Ole Sigmund,et al.  A 99 line topology optimization code written in Matlab , 2001 .

[26]  James K. Guest,et al.  Eliminating beta-continuation from Heaviside projection and density filter algorithms , 2011 .

[27]  James K. Guest,et al.  Optimizing the layout of discrete objects in structures and materials: A projection-based topology optimization approach , 2015 .

[28]  James K. Guest,et al.  Imposing maximum length scale in topology optimization , 2009 .

[29]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[30]  Thomas A. Poulsen A new scheme for imposing a minimum length scale in topology optimization , 2003 .

[31]  Xu Guo,et al.  Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework , 2014 .

[32]  Vivien J. Challis,et al.  A discrete level-set topology optimization code written in Matlab , 2010 .

[33]  Xu Guo,et al.  A new approach for simultaneous shape and topology optimization based on dynamic implicit surface function , 2005 .

[34]  Anders Clausen,et al.  Efficient topology optimization in MATLAB using 88 lines of code , 2011 .

[35]  Niels Olhoff,et al.  Topology optimization of continuum structures: A review* , 2001 .

[36]  Andres Tovar,et al.  An efficient 3D topology optimization code written in Matlab , 2014 .

[37]  Y. Xie,et al.  A simple evolutionary procedure for structural optimization , 1993 .

[38]  M. Zhou,et al.  The COC algorithm, Part II: Topological, geometrical and generalized shape optimization , 1991 .

[39]  Grégoire Allaire,et al.  Structural optimization with $\tt{FreeFem++}$ , 2006 .