On the existence of periodic solutions in time-invariant fractional order systems

Periodic solutions and their existence are one of the most important subjects in dynamical systems. Fractional order systems like integer ones are no exception to this rule. Tavazoei and Haeri (2009) have shown that a time-invariant fractional order system does not have any periodic solution. In this article, this claim has been investigated and it is shown that although in any finite interval of time the solutions do not show any periodic behavior, when the steady state responses of fractional order systems are considered, periodic orbits can be detected.

[1]  J. A. Tenreiro Machado,et al.  Analysis of the Van der Pol Oscillator Containing Derivatives of Fractional Order , 2007 .

[2]  R. Gorenflo,et al.  Fractional calculus and continuous-time finance II: the waiting-time distribution , 2000, cond-mat/0006454.

[3]  H. Srivastava,et al.  THEORY AND APPLICATIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS. NORTH-HOLLAND MATHEMATICS STUDIES , 2006 .

[4]  Jesus M. Gonzalez-miranda,et al.  Synchronization And Control Of Chaos: An Introduction For Scientists And Engineers , 2004 .

[5]  Kitti Paithoonwattanakij,et al.  Chaos in Fractional Order Logistic Model , 2009, 2009 International Conference on Signal Processing Systems.

[6]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[7]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[8]  C. F. Lorenzo,et al.  Chaos in a fractional order Chua's system , 1995 .

[9]  Liping Chen,et al.  Simulation of a viscoelastic flexible multibody system using absolute nodal coordinate and fractional derivative methods , 2009 .

[10]  Chunguang Li,et al.  Chaos in the fractional order Chen system and its control , 2004 .

[11]  Mohammad Saleh Tavazoei,et al.  Analysis of a fractional order Van der Pol-like oscillator via describing function method , 2010 .

[12]  R. Bagley,et al.  The fractional order state equations for the control of viscoelastically damped structures , 1989 .

[13]  R. Bagley,et al.  Fractional order state equations for the control of viscoelasticallydamped structures , 1991 .

[14]  Carl F. Lorenzo,et al.  Initialized Fractional Calculus , 2000 .

[15]  Mohammad Saleh Tavazoei,et al.  A proof for non existence of periodic solutions in time invariant fractional order systems , 2009, Autom..

[16]  S. B. Yuste,et al.  Application of Fractional Calculus to Reaction-Subdiffusion Processes and Morphogen Gradient Formation , 2010, 1006.2661.

[17]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[18]  I. Podlubny Fractional differential equations , 1998 .