Postprocessing of non-conservative flux for compatibility with transport in heterogeneous media

A conservative flux postprocessing algorithm is presented for both steady-state and dynamic flow models. The postprocessed flux is shown to have the same convergence order as the original flux. An ...

[1]  Thomas J. R. Hughes,et al.  The Continuous Galerkin Method Is Locally Conservative , 2000 .

[2]  M. Wheeler,et al.  Projections of velocity data for the compatibility with transport , 2006 .

[3]  Graham F. Carey,et al.  Approximate boundary-flux calculations☆ , 1985 .

[4]  Mary F. Wheeler,et al.  A Multipoint Flux Mixed Finite Element Method , 2006, SIAM J. Numer. Anal..

[5]  C. Paniconi,et al.  Mass-conservative reconstruction of Galerkin velocity fields for transport simulations , 2016 .

[6]  C. Dawson,et al.  A projection method for constructing a mass conservative velocity field , 1998 .

[7]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[8]  Pierre Ladevèze,et al.  Error Estimate Procedure in the Finite Element Method and Applications , 1983 .

[9]  Mats G. Larson,et al.  A conservative flux for the continuous Galerkin method based on discontinuous enrichment , 2004 .

[10]  Matthew W. Farthing,et al.  Finite element methods for variable density flow and solute transport , 2013, Computational Geosciences.

[11]  M. Ainsworth,et al.  A posteriori error estimators in the finite element method , 1991 .

[12]  Mary F. Wheeler,et al.  Symmetric and Nonsymmetric Discontinuous Galerkin Methods for Reactive Transport in Porous Media , 2005, SIAM J. Numer. Anal..

[13]  Stephen L. Lyons,et al.  Global Scale-up on Reservoir Models with Piecewise Constant Permeability Field , 2008 .

[14]  A. Ern,et al.  A discontinuous Galerkin method with weighted averages for advection–diffusion equations with locally small and anisotropic diffusivity , 2008 .

[15]  Raytcho D. Lazarov,et al.  Superconvergence analysis of approximate boundary-flux calculations , 1992 .

[16]  Erik Burman,et al.  A Domain Decomposition Method Based on Weighted Interior Penalties for Advection-Diffusion-Reaction Problems , 2006, SIAM J. Numer. Anal..

[17]  Mary Fanett A PRIORI L2 ERROR ESTIMATES FOR GALERKIN APPROXIMATIONS TO PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS , 1973 .

[18]  Superconvergence of recovered gradients of discrete time/piecewise linear Galerkin approximations for linear and nonlinear parabolic problems , 1994 .

[19]  Graham F. Carey,et al.  Derivative calculation from finite element solutions , 1982 .

[20]  M. Shashkov,et al.  CONVERGENCE OF MIMETIC FINITE DIFFERENCE METHOD FOR DIFFUSION PROBLEMS ON POLYHEDRAL MESHES WITH CURVED FACES , 2006 .

[21]  Mary F. Wheeler,et al.  A Galerkin Procedure for Estimating the Flux for Two-Point Boundary Value Problems , 1974 .

[22]  Srikanta Mishra,et al.  Tracer- and Pressure-Test Analysis for Characterization of Areally Heterogeneous Reservoirs , 1991 .

[23]  W. Bangerth,et al.  deal.II—A general-purpose object-oriented finite element library , 2007, TOMS.

[24]  Quanling Deng,et al.  Construction of locally conservative fluxes for high order continuous Galerkin finite element methods , 2016, J. Comput. Appl. Math..

[25]  Trond Kvamsdal,et al.  Adaptive isogeometric finite element analysis of steady‐state groundwater flow , 2016 .

[26]  M. Putti,et al.  Post processing of solution and flux for the nodal mimetic finite difference method , 2015 .

[27]  Young-Ju Lee,et al.  A Locally Conservative Enriched Galerkin Approximation and Efficient Solver for Elliptic and Parabolic Problems , 2016, SIAM J. Sci. Comput..

[28]  B. Rivière,et al.  Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I , 1999 .

[29]  Shuyu Sun,et al.  A Locally Conservative Finite Element Method Based on Piecewise Constant Enrichment of the Continuous Galerkin Method , 2009, SIAM J. Sci. Comput..

[30]  Trond Kvamsdal,et al.  Goal oriented error estimators for Stokes equations based on variationally consistent postprocessing , 2003 .

[31]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[32]  Mary F. Wheeler,et al.  Compatible algorithms for coupled flow and transport , 2004 .

[33]  Mary F. Wheeler,et al.  Superconvergent recovery of gradients on subdomains from piecewise linear finite-element approximations , 1987 .

[34]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[35]  I. Aavatsmark,et al.  An Introduction to Multipoint Flux Approximations for Quadrilateral Grids , 2002 .

[36]  Raytcho D. Lazarov,et al.  A finite volume element method for a non-linear elliptic problem , 2005, Numer. Linear Algebra Appl..

[37]  Haiying Wang,et al.  Locally Conservative Fluxes for the Continuous Galerkin Method , 2007, SIAM J. Numer. Anal..

[38]  Victor Ginting,et al.  On the Application of the Continuous Galerkin Finite Element Method for Conservation Problems , 2013, SIAM J. Sci. Comput..

[39]  Mary F. Wheeler,et al.  A Galerkin procedure for approximating the flux on the boundary for elliptic and parabolic boundary value problems , 1974 .

[40]  Todd F. Dupont,et al.  A Unified Theory of Superconvergence for Galerkin Methods for Two-Point Boundary Problems , 1976 .

[41]  M. Wheeler Part I. Improved Energy Estimates for Interior Penalty, Constrained and Discontinuous Galerkin Methods for Elliptic Problems , 1999 .

[42]  Matthew W. Farthing,et al.  Locally conservative, stabilized finite element methods for variably saturated flow , 2008 .

[43]  Daniela Capatina,et al.  Local Flux Reconstructions for Standard Finite Element Methods on Triangular Meshes , 2016, SIAM J. Numer. Anal..

[44]  Michael Andrew Christie,et al.  Tenth SPE Comparative Solution Project: a comparison of upscaling techniques , 2001 .

[45]  M. Wheeler A Priori L_2 Error Estimates for Galerkin Approximations to Parabolic Partial Differential Equations , 1973 .