Approximating ground and excited state energies on a quantum computer

Approximating ground and a fixed number of excited state energies, or equivalently low-order Hamiltonian eigenvalues, is an important but computationally hard problem. Typically, the cost of classical deterministic algorithms grows exponentially with the number of degrees of freedom. Under general conditions, and using a perturbation approach, we provide a quantum algorithm that produces estimates of a constant number $$j$$j of different low-order eigenvalues. The algorithm relies on a set of trial eigenvectors, whose construction depends on the particular Hamiltonian properties. We illustrate our results by considering a special case of the time-independent Schrödinger equation with $$d$$d degrees of freedom. Our algorithm computes estimates of a constant number $$j$$j of different low-order eigenvalues with error $$O(\varepsilon )$$O(ε) and success probability at least $$\frac{3}{4}$$34, with cost polynomial in $$\frac{1}{\varepsilon }$$1ε and $$d$$d. This extends our earlier results on algorithms for estimating the ground state energy. The technique we present is sufficiently general to apply to problems beyond the application studied in this paper.

[1]  Hans F. Weinberger,et al.  Lower bounds for higher eigenvalues by finite difference methods. , 1958 .

[2]  Anargyros Papageorgiou,et al.  Estimating the ground state energy of the Schrödinger equation for convex potentials , 2013, J. Complex..

[3]  Yoshimi Saito,et al.  Eigenfunction Expansions Associated with Second-order Differential Equations for Hilbert Space-valued Functions , 1971 .

[4]  Christof Zalka Efficient Simulation of Quantum Systems by Quantum Computers , 1996, quant-ph/9603026.

[5]  A. Papageorgiou,et al.  On the complexity of the multivariate Sturm-Liouville eigenvalue problem , 2007, J. Complex..

[6]  R. Feynman Simulating physics with computers , 1999 .

[7]  Chi Zhang,et al.  A fast algorithm for approximating the ground state energy on a quantum computer , 2010, Math. Comput..

[8]  G. Weiss,et al.  EIGENFUNCTION EXPANSIONS. Associated with Second-order Differential Equations. Part I. , 1962 .

[9]  Ben Andrews,et al.  Proof of the fundamental gap conjecture , 2010, 1006.1686.

[10]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[11]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[12]  F. Verstraete,et al.  Computational complexity of interacting electrons and fundamental limitations of density functional theory , 2007, 0712.0483.

[13]  Chi Zhang,et al.  On the efficiency of quantum algorithms for Hamiltonian simulation , 2010, Quantum Information Processing.

[14]  Israel Michael Sigal,et al.  Introduction to Spectral Theory , 1996 .

[15]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[16]  Gene H. Golub,et al.  Matrix computations , 1983 .

[17]  P. Hohenberg,et al.  Inhomogeneous electron gas , 1964 .

[18]  J. Whitfield,et al.  Simulating chemistry using quantum computers. , 2010, Annual review of physical chemistry.

[19]  M. Suzuki,et al.  General theory of fractal path integrals with applications to many‐body theories and statistical physics , 1991 .

[20]  R. LeVeque Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems (Classics in Applied Mathematics Classics in Applied Mathemat) , 2007 .

[21]  Ashwin Nayak,et al.  Interacting boson problems can be QMA hard. , 2009, Physical review letters.

[22]  J. Traub,et al.  Quantum algorithm and circuit design solving the Poisson equation , 2012, 1207.2485.

[23]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[24]  Randall J. LeVeque,et al.  Finite difference methods for ordinary and partial differential equations - steady-state and time-dependent problems , 2007 .

[25]  Israel Michael Sigal,et al.  Introduction to Spectral Theory: With Applications to Schrödinger Operators , 1995 .

[26]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[27]  Christof Zalka Simulating quantum systems on a quantum computer , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[28]  Julia Kempe,et al.  The Complexity of the Local Hamiltonian Problem , 2004, FSTTCS.

[29]  A. Klappenecker,et al.  Discrete cosine transforms on quantum computers , 2001, ISPA 2001. Proceedings of the 2nd International Symposium on Image and Signal Processing and Analysis. In conjunction with 23rd International Conference on Information Technology Interfaces (IEEE Cat..

[30]  B. Lanyon,et al.  Towards quantum chemistry on a quantum computer. , 2009, Nature chemistry.

[31]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[32]  Anargyros Papageorgiou,et al.  Measures of quantum computing speedup , 2013, 1307.7488.

[33]  Sophia Blau,et al.  Analysis Of The Finite Element Method , 2016 .

[34]  M. Suzuki,et al.  Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .

[35]  R. Cleve,et al.  Efficient Quantum Algorithms for Simulating Sparse Hamiltonians , 2005, quant-ph/0508139.

[36]  S. Gustafson,et al.  Mathematical Concepts of Quantum Mechanics , 2006, Universitext.

[37]  Hans F. Weinberger,et al.  Upper and lower bounds for eigenvalues by finite difference methods , 1956 .

[38]  Amnon Ta-Shma,et al.  Adiabatic quantum state generation and statistical zero knowledge , 2003, STOC '03.

[39]  J. Cullum,et al.  Lanczos Algorithms for Large Symmetric Eigenvalue Computations, Vol. 1 , 2002 .

[40]  P. Brandimarte Finite Difference Methods for Partial Differential Equations , 2006 .

[41]  P. Love Back to The Future: A Roadmap for Quantum Simulation From Vintage Quantum Chemistry , 2012, 1208.5524.

[42]  David P. DiVincenzo,et al.  The complexity of stoquastic local Hamiltonian problems , 2006, Quantum Inf. Comput..

[43]  J. Cullum,et al.  Lanczos algorithms for large symmetric eigenvalue computations , 1985 .

[44]  Dmitrij Rappoport,et al.  Density functional methods for excited states: equilibrium structure and electronic spectra , 2005 .

[45]  M. Victor Wickerhauser,et al.  Adapted wavelet analysis from theory to software , 1994 .

[46]  Andrew M. Childs,et al.  The Bose-Hubbard Model is QMA-complete , 2015, Theory Comput..

[47]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.