Enhanced soft subspace clustering through hybrid dissimilarity

[1]  Xizhao Wang,et al.  A New Approach to Classifier Fusion Based on Upper Integral , 2014, IEEE Transactions on Cybernetics.

[2]  Jun-Hai Zhai,et al.  Condensed fuzzy nearest neighbor methods based on fuzzy rough set technique , 2014, Intell. Data Anal..

[3]  Yan Li,et al.  FUSION OF EXTREME LEARNING MACHINE WITH FUZZY INTEGRAL , 2013 .

[4]  Jian Zhuang,et al.  Novel soft subspace clustering with multi-objective evolutionary approach for high-dimensional data , 2013, Pattern Recognit..

[5]  Jun-Hai Zhai,et al.  An improved algorithm for calculating fuzzy attribute reducts , 2013, J. Intell. Fuzzy Syst..

[6]  Xizhao Wang,et al.  Maximum Ambiguity-Based Sample Selection in Fuzzy Decision Tree Induction , 2012, IEEE Transactions on Knowledge and Data Engineering.

[7]  Si Chen,et al.  Soft subspace clustering with an improved feature weight self-adjustment mechanism , 2012, Int. J. Mach. Learn. Cybern..

[8]  Zhaohong Deng,et al.  Enhanced soft subspace clustering integrating within-cluster and between-cluster information , 2010, Pattern Recognit..

[9]  Jianhong Wu,et al.  A convergence theorem for the fuzzy subspace clustering (FSC) algorithm , 2008, Pattern Recognit..

[10]  Michael K. Ng,et al.  An Entropy Weighting k-Means Algorithm for Subspace Clustering of High-Dimensional Sparse Data , 2007, IEEE Transactions on Knowledge and Data Engineering.

[11]  Dimitrios Gunopulos,et al.  Locally adaptive metrics for clustering high dimensional data , 2007, Data Mining and Knowledge Discovery.

[12]  Michael K. Ng,et al.  On the Performance of Feature Weighting K-Means for Text Subspace Clustering , 2005, WAIM.

[13]  Michael K. Ng,et al.  Subspace Clustering of Text Documents with Feature Weighting K-Means Algorithm , 2005, PAKDD.

[14]  Michael K. Ng,et al.  Automated variable weighting in k-means type clustering , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  J. Friedman,et al.  Clustering objects on subsets of attributes (with discussion) , 2004 .

[16]  Michael K. Ng,et al.  An optimization algorithm for clustering using weighted dissimilarity measures , 2004, Pattern Recognit..

[17]  Sharad Mehrotra,et al.  Local Dimensionality Reduction: A New Approach to Indexing High Dimensional Spaces , 2000, VLDB.

[18]  Philip S. Yu,et al.  Finding generalized projected clusters in high dimensional spaces , 2000, SIGMOD '00.

[19]  Yi Zhang,et al.  Entropy-based subspace clustering for mining numerical data , 1999, KDD '99.

[20]  Philip S. Yu,et al.  Fast algorithms for projected clustering , 1999, SIGMOD '99.

[21]  Dimitrios Gunopulos,et al.  Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.

[22]  Longbing Cao,et al.  Evolving soft subspace clustering , 2014, Appl. Soft Comput..

[23]  Yu-Lin He,et al.  Non-Naive Bayesian Classifiers for Classification Problems With Continuous Attributes , 2014, IEEE Transactions on Cybernetics.

[24]  Yunming Ye,et al.  A feature group weighting method for subspace clustering of high-dimensional data , 2012, Pattern Recognit..

[25]  Dimitrios Gunopulos,et al.  Subspace Clustering of High Dimensional Data , 2004, SDM.

[26]  Hans-Peter Kriegel,et al.  Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering , 2009, TKDD.