Plasmid-Mediated Quinolone Resistance in Extended-Spectrum-β-Lactamase- and AmpC β-Lactamase-Producing Serratia marcescens in China

ABSTRACT We investigated the prevalence of plasmid-mediated quinolone resistance (PMQR) determinants and examined the association of these determinants with extended-spectrum β-lactamases (ESBLs) and/or plasmid-mediated AmpC β-lactamases (pAmpCs) in Serratia marcescens isolates in China. In this study, the presence of PMQR determinants was significantly related to the coproduction of ESBLs and/or pAmpCs (CTX-M-14, SHV-5, DHA-1, and ACT-1), among which CTX-M-14 was the most common gene type.

[1]  J. Shin,et al.  Prevalence of Plasmid-mediated Quinolone Resistance and Its Association with Extended-spectrum Beta-lactamase and AmpC Beta-lactamase in Enterobacteriaceae , 2011, The Korean journal of laboratory medicine.

[2]  M. Timinouni,et al.  Characterization of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates from the community in Morocco. , 2011, Journal of medical microbiology.

[3]  F. de la Cruz,et al.  In vivo transmission of a plasmid coharbouring bla and qnrB genes between Escherichia coli and Serratia marcescens. , 2010, FEMS microbiology letters.

[4]  D. Hooper,et al.  New Plasmid-Mediated Quinolone Resistance Gene, qnrC, Found in a Clinical Isolate of Proteus mirabilis , 2009, Antimicrobial Agents and Chemotherapy.

[5]  Jun Li,et al.  Investigation of qnr and aac(6')-Ib-cr in Enterobacter cloacae isolates from Anhui Province, China. , 2008, Diagnostic microbiology and infectious disease.

[6]  F. Aarestrup,et al.  qnrD, a Novel Gene Conferring Transferable Quinolone Resistance in Salmonella enterica Serovar Kentucky and Bovismorbificans Strains of Human Origin , 2008, Antimicrobial Agents and Chemotherapy.

[7]  Seungok Lee,et al.  Prevalence and diversity of qnr alleles in AmpC-producing Enterobacter cloacae, Enterobacter aerogenes, Citrobacter freundii and Serratia marcescens: a multicentre study from Korea. , 2007, The Journal of antimicrobial chemotherapy.

[8]  K. Kimura,et al.  New Plasmid-Mediated Fluoroquinolone Efflux Pump, QepA, Found in an Escherichia coli Clinical Isolate , 2007, Antimicrobial Agents and Chemotherapy.

[9]  A. Robicsek,et al.  The worldwide emergence of plasmid-mediated quinolone resistance. , 2006, The Lancet. Infectious diseases.

[10]  S. Geerlings,et al.  Pathogenesis and management of bacterial urinary tract infections in adult patients with diabetes mellitus. , 2003, International journal of antimicrobial agents.

[11]  B. Wiedemann,et al.  Natural antibiotic susceptibility of strains of Serratia marcescens and the S. liquefaciens complex: S. liquefaciens sensu stricto, S. proteamaculans and S. grimesii. , 2003, International journal of antimicrobial agents.

[12]  G. Jacoby,et al.  Plasmid-Mediated Quinolone Resistance in Clinical Isolates of Escherichia coli from Shanghai, China , 2003, Antimicrobial Agents and Chemotherapy.

[13]  D. Yong,et al.  Further modification of the Hodge test to screen AmpC beta-lactamase (CMY-1)-producing strains of Escherichia coli and Klebsiella pneumoniae. , 2002, Journal of microbiological methods.

[14]  N. Hanson,et al.  Detection of Plasmid-Mediated AmpC β-Lactamase Genes in Clinical Isolates by Using Multiplex PCR , 2002, Journal of Clinical Microbiology.

[15]  A. Tsakris,et al.  Detection of Extended-Spectrum β-Lactamases in Clinical Isolates of Enterobacter cloacae andEnterobacter aerogenes , 2000, Journal of Clinical Microbiology.

[16]  M. Ferraro Performance standards for antimicrobial susceptibility testing , 2001 .

[17]  A. Tsakris,et al.  Detection of extended-spectrum beta-lactamases in clinical isolates of Enterobacter cloacae and Enterobacter aerogenes. , 2000, Journal of clinical microbiology.