Riemann manifold Langevin and Hamiltonian Monte Carlo methods

Summary.  The paper proposes Metropolis adjusted Langevin and Hamiltonian Monte Carlo sampling methods defined on the Riemann manifold to resolve the shortcomings of existing Monte Carlo algorithms when sampling from target densities that may be high dimensional and exhibit strong correlations. The methods provide fully automated adaptation mechanisms that circumvent the costly pilot runs that are required to tune proposal densities for Metropolis–Hastings or indeed Hamiltonian Monte Carlo and Metropolis adjusted Langevin algorithms. This allows for highly efficient sampling even in very high dimensions where different scalings may be required for the transient and stationary phases of the Markov chain. The methodology proposed exploits the Riemann geometry of the parameter space of statistical models and thus automatically adapts to the local structure when simulating paths across this manifold, providing highly efficient convergence and exploration of the target density. The performance of these Riemann manifold Monte Carlo methods is rigorously assessed by performing inference on logistic regression models, log‐Gaussian Cox point processes, stochastic volatility models and Bayesian estimation of dynamic systems described by non‐linear differential equations. Substantial improvements in the time‐normalized effective sample size are reported when compared with alternative sampling approaches. MATLAB code that is available from http://www.ucl.ac.uk/statistics/research/rmhmc allows replication of all the results reported.

[1]  H. Jeffreys,et al.  Theory of probability , 1896 .

[2]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[3]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[4]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[5]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[6]  N. Meyers,et al.  H = W. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[7]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[8]  Robert K. Tsutakawa,et al.  Design of Experiment for Bioassay , 1972 .

[9]  B. Efron Defining the Curvature of a Statistical Problem (with Applications to Second Order Efficiency) , 1975 .

[10]  J. Kent Time-reversible diffusions , 1978, Advances in Applied Probability.

[11]  B. Efron,et al.  Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information , 1978 .

[12]  D. G. Watts,et al.  Relative Curvature Measures of Nonlinearity , 1980 .

[13]  P. Ferreira,et al.  Extending Fisher's measure of information , 1981 .

[14]  C. R. Rao,et al.  Entropy differential metric, distance and divergence measures in probability spaces: A unified approach , 1982 .

[15]  S. Amari Differential Geometry of Curved Exponential Families-Curvatures and Information Loss , 1982 .

[16]  K. Chung Lectures from Markov processes to Brownian motion , 1982 .

[17]  D. G. Watts,et al.  Calculation of intrinsic and parameter-effects curvatures for nonlinear regression models , 1983 .

[18]  S. Eguchi Second Order Efficiency of Minimum Contrast Estimators in a Curved Exponential Family , 1983 .

[19]  C. R. Rao,et al.  Differential metrics in probability spaces , 1984 .

[20]  S. Amari Differential Geometry of Statistical Models , 1985 .

[21]  Peter Steele,et al.  X + X + I , 1986 .

[22]  J. Bismut Probability and geometry , 1986 .

[23]  D. Cox,et al.  The role of differential geometry in statistical theory , 1986 .

[24]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[25]  Roger Fletcher,et al.  Practical methods of optimization; (2nd ed.) , 1987 .

[26]  R. Fletcher Practical Methods of Optimization , 1988 .

[27]  References to discussion , 1988 .

[28]  Douglas M. Bates,et al.  Nonlinear Regression Analysis and Its Applications , 1988 .

[29]  R. Kass The Geometry of Asymptotic Inference , 1989 .

[30]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[31]  A. Horowitz A generalized guided Monte Carlo algorithm , 1991 .

[32]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[33]  C. R. Rao,et al.  Information and the Accuracy Attainable in the Estimation of Statistical Parameters , 1992 .

[34]  Radford M. Neal Bayesian Learning via Stochastic Dynamics , 1992, NIPS.

[35]  M. Murray,et al.  Differential Geometry and Statistics , 1993 .

[36]  Paul Marriott,et al.  Preferred Point Geometry and Statistical Manifolds , 1993 .

[37]  Michael I. Miller,et al.  REPRESENTATIONS OF KNOWLEDGE IN COMPLEX SYSTEMS , 1994 .

[38]  N. Shephard,et al.  Stochastic Volatility: Likelihood Inference And Comparison With Arch Models , 1996 .

[39]  David J. Spiegelhalter,et al.  Machine Learning, Neural and Statistical Classification , 2009 .

[40]  J. Besag,et al.  Bayesian Computation and Stochastic Systems , 1995 .

[41]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[42]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[43]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[44]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[45]  R. Tweedie,et al.  Rates of convergence of the Hastings and Metropolis algorithms , 1996 .

[46]  R. Tweedie,et al.  Exponential convergence of Langevin distributions and their discrete approximations , 1996 .

[47]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[48]  L. Hughston,et al.  Geometry of stochastic state vector reduction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[49]  Dean S. Oliver,et al.  Conditioning Permeability Fields to Pressure Data , 1996 .

[50]  Jean-François Cardoso,et al.  Equivariant adaptive source separation , 1996, IEEE Trans. Signal Process..

[51]  Peter E. Jupp,et al.  Yokes and symplectic structures , 1997 .

[52]  P Gustafson,et al.  Large hierarchical Bayesian analysis of multivariate survival data. , 1997, Biometrics.

[53]  R. Kass,et al.  Geometrical Foundations of Asymptotic Inference , 1997 .

[54]  Dani Gamerman,et al.  Sampling from the posterior distribution in generalized linear mixed models , 1997, Stat. Comput..

[55]  P. Green,et al.  On Bayesian Analysis of Mixtures with an Unknown Number of Components (with discussion) , 1997 .

[56]  I. Duff,et al.  The state of the art in numerical analysis , 1997 .

[57]  Peter E. Jupp,et al.  Statistics, yokes and symplectic geometry , 1997 .

[58]  R. Kass,et al.  Geometrical Foundations of Asymptotic Inference: Kass/Geometrical , 1997 .

[59]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[60]  Agostino Nobile,et al.  A hybrid Markov chain for the Bayesian analysis of the multinomial probit model , 1998, Stat. Comput..

[61]  Gavin J. Gibson,et al.  Estimating parameters in stochastic compartmental models using Markov chain methods , 1998 .

[62]  Xiao-Li Meng,et al.  Simulating Normalizing Constants: From Importance Sampling to Bridge Sampling to Path Sampling , 1998 .

[63]  J. Rosenthal,et al.  Optimal scaling of discrete approximations to Langevin diffusions , 1998 .

[64]  W. Welch,et al.  Fisher information and maximum‐likelihood estimation of covariance parameters in Gaussian stochastic processes , 1998 .

[65]  Michael I. Miller,et al.  Hilbert-Schmidt Lower Bounds for Estimators on Matrix Lie Groups for ATR , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[66]  William D. Penny,et al.  Bayesian Approaches to Gaussian Mixture Modeling , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[67]  H. Ishwaran Applications of Hybrid Monte Carlo to Bayesian Generalized Linear Models: Quasicomplete Separation and Neural Networks , 1999 .

[68]  G. Roberts,et al.  Bayesian inference for partially observed stochastic epidemics , 1999 .

[69]  Hagai Attias,et al.  A Variational Bayesian Framework for Graphical Models , 1999 .

[70]  William D. Penny,et al.  An empirical evaluation of Bayesian sampling with hybrid Monte Carlo for training neural network classifiers , 1999, Neural Networks.

[71]  Thermalization of quantum states , 1997, quant-ph/9711057.

[72]  R. Tweedie,et al.  Langevin-Type Models II: Self-Targeting Candidates for MCMC Algorithms* , 1999 .

[73]  Eero Saksman,et al.  Adaptive proposal distribution for random walkMetropolis , 1999 .

[74]  Heikki Haario,et al.  Adaptive proposal distribution for random walk Metropolis algorithm , 1999, Comput. Stat..

[75]  R. Tweedie,et al.  Langevin-Type Models I: Diffusions with Given Stationary Distributions and their Discretizations* , 1999 .

[76]  Jim Albert,et al.  Ordinal Data Modeling , 2000 .

[77]  Peter E. Rossi,et al.  A Bayesian analysis of the multinomial probit model with fully identified parameters , 2000 .

[78]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[79]  Dirk Husmeier,et al.  The Bayesian Evidence Scheme for Regularizing Probability-Density Estimating Neural Networks , 2000, Neural Computation.

[80]  Kiam Choo Learning hyperparameters for neural network models using Hamiltonian dynamics , 2000 .

[81]  Andrzej Cichocki,et al.  Nonholonomic Orthogonal Learning Algorithms for Blind Source Separation , 2000, Neural Computation.

[82]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[83]  Anuj Srivastava,et al.  A Bayesian approach to geometric subspace estimation , 2000, IEEE Trans. Signal Process..

[84]  Agostino Nobile,et al.  Comment: Bayesian multinomial probit models with a normalization constraint , 2000 .

[85]  Ole Winther,et al.  Gaussian Processes for Classification: Mean-Field Algorithms , 2000, Neural Computation.

[86]  Francis Sullivan,et al.  The Metropolis Algorithm , 2000, Computing in Science & Engineering.

[87]  Radford M. Neal,et al.  ANALYSIS OF A NONREVERSIBLE MARKOV CHAIN SAMPLER , 2000 .

[88]  M. C. Chaki ON STATISTICAL MANIFOLDS , 2000 .

[89]  J. Rosenthal,et al.  Optimal scaling for various Metropolis-Hastings algorithms , 2001 .

[90]  Kenneth M. Hanson,et al.  Markov chain Monte Carlo posterior sampling with the Hamiltonian method , 2001, SPIE Medical Imaging.

[91]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[92]  H. V. Trees Detection, Estimation, And Modulation Theory , 2001 .

[93]  Yoram Baram,et al.  Manifold Stochastic Dynamics for Bayesian Learning , 1999, Neural Computation.

[94]  Siem Jan Koopman,et al.  Time Series Analysis by State Space Methods , 2001 .

[95]  Jun S. Liu,et al.  Monte Carlo strategies in scientific computing , 2001 .

[96]  Tom Minka,et al.  A family of algorithms for approximate Bayesian inference , 2001 .

[97]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[98]  H. Forbert,et al.  Fourth-order algorithms for solving the multivariable Langevin equation and the Kramers equation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[99]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[100]  K. Meyer,et al.  Are Hamiltonian flows geodesic flows , 2002 .

[101]  G. Roberts,et al.  Langevin Diffusions and Metropolis-Hastings Algorithms , 2002 .

[102]  N. Chopin A sequential particle filter method for static models , 2002 .

[103]  U. Grenander,et al.  Jump–diffusion Markov processes on orthogonal groups for object pose estimation , 2002 .

[104]  Anuj Srivastava,et al.  Monte Carlo extrinsic estimators of manifold-valued parameters , 2002, IEEE Trans. Signal Process..

[105]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[106]  Xiao-Li Meng,et al.  Warp Bridge Sampling , 2002 .

[107]  O. Haggstrom Reversible Markov chains , 2002 .

[108]  K. Hanson Use of probability gradients in hybrid MCMC and a new convergence test , 2002 .

[109]  M. Caffarel,et al.  Zero-variance zero-bias principle for observables in quantum Monte Carlo: Application to forces , 2003, physics/0310035.

[110]  K. S. Brown,et al.  Statistical mechanical approaches to models with many poorly known parameters. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[111]  Clifton L Gooch,et al.  Motor unit number estimation. , 2003, Physical medicine and rehabilitation clinics of North America.

[112]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[113]  S. Walker Invited comment on the paper "Slice Sampling" by Radford Neal , 2003 .

[114]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[115]  K. H. Lee,et al.  The statistical mechanics of complex signaling networks: nerve growth factor signaling , 2004, Physical biology.

[116]  B. Leimkuhler,et al.  Simulating Hamiltonian Dynamics , 2005 .

[117]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[118]  Jun Zhang,et al.  Divergence Function, Duality, and Convex Analysis , 2004, Neural Computation.

[119]  Stephen J. Roberts,et al.  Bayesian Independent Component Analysis with Prior Constraints: An Application in Biosignal Analysis , 2004, Deterministic and Statistical Methods in Machine Learning.

[120]  C. Villani,et al.  Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.

[121]  J. Rosenthal,et al.  Scaling limits for the transient phase of local Metropolis–Hastings algorithms , 2005 .

[122]  Fabian J Theis Gradients on matrix manifolds and their chain rule , 2005 .

[123]  Wei-Liem Loh,et al.  Fixed-domain asymptotics for a subclass of Matern-type Gaussian random fields , 2005, math/0602302.

[124]  PETER NEAL,et al.  A case study in non-centering for data augmentation: Stochastic epidemics , 2005, Stat. Comput..

[125]  Shinto Eguchi,et al.  Local model uncertainty and incomplete‐data bias (with discussion) , 2005 .

[126]  D. V. Dyk,et al.  A Bayesian analysis of the multinomial probit model using marginal data augmentation , 2005 .

[127]  J. Spall Monte Carlo Computation of the Fisher Information Matrix in Nonstandard Settings , 2005 .

[128]  Y. Atchadé An Adaptive Version for the Metropolis Adjusted Langevin Algorithm with a Truncated Drift , 2006 .

[129]  Francesco Piazza,et al.  New Riemannian metrics for speeding-up the convergence of over- and underdetermined ICA , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[130]  Jiguo Cao,et al.  Parameter estimation for differential equations: a generalized smoothing approach , 2007 .

[131]  C. Holmes,et al.  Bayesian auxiliary variable models for binary and multinomial regression , 2006 .

[132]  C. Andrieu,et al.  On the ergodicity properties of some adaptive MCMC algorithms , 2006, math/0610317.

[133]  P. Fearnhead,et al.  Exact and computationally efficient likelihood‐based estimation for discretely observed diffusion processes (with discussion) , 2006 .

[134]  E L Ionides,et al.  Inference for nonlinear dynamical systems , 2006, Proceedings of the National Academy of Sciences.

[135]  Jeffrey S. Morris,et al.  Wavelet‐based functional mixed models , 2006, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[136]  Heikki Haario,et al.  DRAM: Efficient adaptive MCMC , 2006, Stat. Comput..

[137]  Gareth O. Roberts,et al.  Robust Markov chain Monte Carlo Methods for Spatial Generalized Linear Mixed Models , 2006 .

[138]  Ryan N. Gutenkunst,et al.  Sloppiness, Modeling, and Evolution in Biochemical Networks , 2007 .

[139]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[140]  N. Friel,et al.  Motor unit number estimation using reversible jump Markov chain Monte Carlo (with discussion). , 2007 .

[141]  Christopher R. Myers,et al.  Universally Sloppy Parameter Sensitivities in Systems Biology Models , 2007, PLoS Comput. Biol..

[142]  Gareth O. Roberts,et al.  A General Framework for the Parametrization of Hierarchical Models , 2007, 0708.3797.

[143]  P. Marriott,et al.  Local mixture models of exponential families , 2007, 0709.0447.

[144]  Aki Vehtari,et al.  Sparse Log Gaussian Processes via MCMC for Spatial Epidemiology , 2007, Gaussian Processes in Practice.

[145]  Juha Karhunen,et al.  Natural Conjugate Gradient in Variational Inference , 2007, ICONIP.

[146]  Andrew Gelman,et al.  Struggles with survey weighting and regression modeling , 2007, 0710.5005.

[147]  Theodoros Kypraios,et al.  Efficient Bayesian inference for partially observed stochastic epidemics and a new class of semi-parametric time series models , 2007 .

[148]  Jean-Michel Marin,et al.  Bayesian Core: A Practical Approach to Computational Bayesian Statistics , 2010 .

[149]  T. Lelièvre,et al.  Long-time convergence of an adaptive biasing force method , 2007, 0706.1695.

[150]  Amir Hajian,et al.  Efficient cosmological parameter estimation with Hamiltonian Monte Carlo technique , 2007 .

[151]  Andrew Gelman,et al.  Red State, Blue State, Rich State, Poor State: Why Americans Vote the Way They Do , 2008 .

[152]  I. Dryden,et al.  Brownian Motion and Ornstein–Uhlenbeck Processes in Planar Shape Space , 2008 .

[153]  Christophe Andrieu,et al.  A tutorial on adaptive MCMC , 2008, Stat. Comput..

[154]  Mark A. Girolami,et al.  Bayesian ranking of biochemical system models , 2008, Bioinform..

[155]  G. Roberts,et al.  MCMC methods for diffusion bridges , 2008 .

[156]  P. Giordani,et al.  Adaptive Independent Metropolis–Hastings by Fast Estimation of Mixtures of Normals , 2008, 0801.1864.

[157]  Barak A. Pearlmutter,et al.  Nesting forward-mode AD in a functional framework , 2008, High. Order Symb. Comput..

[158]  Troels B. Sørensen,et al.  In-Band Interference Effects on UTRA LTE Uplink Resource Block Allocation , 2008, VTC Spring 2008 - IEEE Vehicular Technology Conference.

[159]  Darren J. Wilkinson,et al.  Discussion of Particle Markov chain Monte Carlo , 2008 .

[160]  Barak A. Pearlmutter,et al.  Reverse-mode AD in a functional framework: Lambda the ultimate backpropagator , 2008, TOPL.

[161]  Bryan C. Daniels,et al.  Sloppiness, robustness, and evolvability in systems biology. , 2008, Current opinion in biotechnology.

[162]  Mikkel N. Schmidt,et al.  Nonnegative Matrix Factorization with Gaussian Process Priors , 2008, Comput. Intell. Neurosci..

[163]  Alexandros Beskos,et al.  A Factorisation of Diffusion Measure and Finite Sample Path Constructions , 2008 .

[164]  Neil D. Lawrence,et al.  Accelerating Bayesian Inference over Nonlinear Differential Equations with Gaussian Processes , 2008, NIPS.

[165]  Aaron A. King,et al.  Time series analysis via mechanistic models , 2008, 0802.0021.

[166]  Gareth O. Roberts,et al.  An empirical study of the efficiency of EA for diffusion simulation , 2008 .

[167]  P. Green,et al.  Reversible jump MCMC , 2009 .

[168]  Mark A. Girolami,et al.  Estimating Bayes factors via thermodynamic integration and population MCMC , 2009, Comput. Stat. Data Anal..

[169]  C. Robert,et al.  Adaptive approximate Bayesian computation , 2008, 0805.2256.

[170]  Mingjun Zhong,et al.  Reversible Jump MCMC for Non-Negative Matrix Factorization , 2009, AISTATS.

[171]  Radford M. Neal Regression and Classification Using Gaussian Process Priors , 2009 .

[172]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[173]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[174]  Jean-Marie Cornuet,et al.  Adaptive Multiple Importance Sampling , 2009, 0907.1254.

[175]  Edward L. Ionides,et al.  Plug-and-play inference for disease dynamics: measles in large and small populations as a case study , 2009, Journal of The Royal Society Interface.

[176]  K. Walsh Red State, Blue State, Rich State, Poor State: Why Americans Vote the Way They Doby Andrew Gelman , 2009 .

[177]  Jinhong Yuan,et al.  Channel Estimation in OFDM Systems with Unknown Power Delay Profile using Trans-Dimensional MCMC via Stochastic Approximation , 2009, VTC Spring 2009 - IEEE 69th Vehicular Technology Conference.

[178]  Gareth O. Roberts,et al.  Examples of Adaptive MCMC , 2009 .

[179]  Paul H. C. Eilers,et al.  Bayesian density estimation from grouped continuous data , 2009, Comput. Stat. Data Anal..

[180]  Pengfei Li,et al.  Non-finite Fisher information and homogeneity: an EM approach , 2009 .

[181]  Astrid Maute,et al.  Bayesian calibration of the Thermosphere-Ionosphere Electrodynamics General Circulation Model (TIE-GCM) , 2009 .

[182]  Ryan P. Adams,et al.  Slice sampling covariance hyperparameters of latent Gaussian models , 2010, NIPS.

[183]  H. Rue,et al.  An explicit link between Gaussian fields and Gaussian Markov random fields; The SPDE approach , 2010 .

[184]  J. M. Sanz-Serna,et al.  Optimal tuning of the hybrid Monte Carlo algorithm , 2010, 1001.4460.

[185]  Gary L. Miller,et al.  Approaching Optimality for Solving SDD Linear Systems , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[186]  Petros Dellaportas,et al.  Control Variates for Reversible MCMC Samplers , 2010, 1008.1355.

[187]  G. Peters,et al.  Ecological non-linear state space model selection via adaptive particle Markov chain Monte Carlo (AdPMCMC) , 2010, 1005.2238.

[188]  Siddhartha Chib,et al.  Tailored randomized block MCMC methods with application to DSGE models , 2010 .

[189]  Xavier Pennec,et al.  Power Euclidean metrics for covariance matrices with application to diffusion tensor imaging , 2010, 1009.3045.

[190]  Mark K Transtrum,et al.  Why are nonlinear fits to data so challenging? , 2009, Physical review letters.

[191]  Darren J. Wilkinson,et al.  Markov Chain Monte Carlo Algorithms for SDE Parameter Estimation , 2010, Learning and Inference in Computational Systems Biology.

[192]  Peter E. Jupp,et al.  A van Trees inequality for estimators on manifolds , 2010, J. Multivar. Anal..

[193]  J. Vanhatalo,et al.  Approximate inference for disease mapping with sparse Gaussian processes , 2010, Statistics in medicine.

[194]  Juha Karhunen,et al.  Approximate Riemannian Conjugate Gradient Learning for Fixed-Form Variational Bayes , 2010, J. Mach. Learn. Res..

[195]  Roger G. Ghanem,et al.  Efficient Monte Carlo computation of Fisher information matrix using prior information , 2010, Comput. Stat. Data Anal..

[196]  A. Doucet,et al.  Particle Markov chain Monte Carlo methods , 2010 .

[197]  Mercedes Pascual,et al.  Forcing Versus Feedback: Epidemic Malaria and Monsoon Rains in Northwest India , 2010, PLoS Comput. Biol..

[198]  J. Copas,et al.  Likelihood for statistically equivalent models , 2010 .

[199]  C. Robert,et al.  Importance sampling methods for Bayesian discrimination between embedded models , 2009, 0910.2325.

[200]  Xiao-Li Meng,et al.  Cross-fertilizing strategies for better EM mountain climbing and DA field exploration: A graphical guide book , 2010, 1104.1897.

[201]  Radford M. Neal Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .

[202]  Matthias J. Ehrhardt,et al.  Geometric Numerical Integration Structure-Preserving Algorithms for QCD Simulations , 2012 .

[203]  A. Patra PARAMETER ESTIMATION FOR DIFFERENTIAL EQUATIONS , 2011 .

[204]  J. M. Sanz-Serna,et al.  Hybrid Monte Carlo on Hilbert spaces , 2011 .

[205]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[206]  Jeffrey S. Rosenthal,et al.  Optimal Proposal Distributions and Adaptive MCMC , 2011 .

[207]  C. Geyer,et al.  Supporting Theory and Data Analysis for "Long Range Search for Maximum Likelihood in Exponential Families" , 2011 .

[208]  P. Priouret,et al.  Bayesian Time Series Models: Adaptive Markov chain Monte Carlo: theory and methods , 2011 .

[209]  Mark K Transtrum,et al.  Geometry of nonlinear least squares with applications to sloppy models and optimization. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[210]  Sumeetpal S. Singh,et al.  Particle approximations of the score and observed information matrix in state space models with application to parameter estimation , 2011 .

[211]  Fabio Rigat,et al.  Parallel hierarchical sampling: A general-purpose interacting Markov chains Monte Carlo algorithm , 2012, Comput. Stat. Data Anal..

[212]  Antonietta Mira,et al.  Zero variance Markov chain Monte Carlo for Bayesian estimators , 2010, Stat. Comput..