Crystal Structure of the Ergothioneine Sulfoxide Synthase from Candidatus Chloracidobacterium thermophilum and Structure-Guided Engineering To Modulate Its Substrate Selectivity.

Ergothioneine is a thiohistidine derivative with potential benefits on many aging-related diseases. The central step of aerobic ergothioneine biosynthesis is the oxidative C-S bond formation reaction catalyzed by mononuclear nonheme iron sulfoxide synthases (EgtB and Egt1). Thus far, only the Mycobacterium thermoresistibile EgtB (EgtB Mth ) crystal structure is available, while the structural information for the more industrially attractive Egt1 enzyme is not. Herein, we reported the crystal structure of the ergothioneine sulfoxide synthase (EgtB Cth ) from Candidatus Chloracidobacterium thermophilum. EgtB Cth has both EgtB- and Egt1-type of activities. Guided by the structural information, we conducted Rosetta Enzyme Design calculations, and we biochemically demonstrated that EgtB Cth can be engineered more toward Egt1-type of activity. This study provides information regarding the factors governing the substrate selectivity in Egt1- and EgtB-catalysis and lays the groundwork for future sulfoxide synthase engineering toward the development of an effective ergothioneine process through a synthetic biology approach.

[1]  Tilman Schirmer,et al.  An Alternative Active Site Architecture for O2 Activation in the Ergothioneine Biosynthetic EgtB from Chloracidobacterium thermophilum. , 2019, Journal of the American Chemical Society.

[2]  I. Castellano,et al.  On ovothiol biosynthesis and biological roles: from life in the ocean to therapeutic potential. , 2018, Natural product reports.

[3]  Pinghua Liu,et al.  Mechanistic Studies of a Nonheme Iron Enzyme OvoA in Ovothiol Biosynthesis Using a Tyrosine Analogue, 2-Amino-3-(4-hydroxy-3-(methoxyl) phenyl) Propanoic Acid (MeOTyr) , 2018, ACS Catalysis.

[4]  Heng Song,et al.  Crystal Structure of OvoB , 2018 .

[5]  Hein J. Wijma,et al.  Computational redesign of enzymes for regio- and enantioselective hydroamination , 2018, Nature Chemical Biology.

[6]  Pinghua Liu,et al.  Snapshots of C‐S cleavage in Egt2 reveals substrate specificity and reaction mechanism , 2018, Cell chemical biology.

[7]  Pinghua Liu,et al.  Mini-Review: Ergothioneine and Ovothiol Biosyntheses, an Unprecedented Trans-Sulfur Strategy in Natural Product Biosynthesis. , 2018, Biochemistry.

[8]  Z. Deng,et al.  Use of a Tyrosine Analogue To Modulate the Two Activities of a Nonheme Iron Enzyme OvoA in Ovothiol Biosynthesis, Cysteine Oxidation versus Oxidative C-S Bond Formation. , 2018, Journal of the American Chemical Society.

[9]  P. D. Cook,et al.  Structure and function of the bacillithiol‐S‐transferase BstA from Staphylococcus aureus , 2018, Protein science : a publication of the Protein Society.

[10]  F. Seebeck,et al.  Convergent Evolution of Ergothioneine Biosynthesis in Cyanobacteria , 2017, Chembiochem : a European journal of chemical biology.

[11]  M. Knop,et al.  Structural Basis for Copper-Oxygen Mediated C-H Bond Activation by the Formylglycine-Generating Enzyme. , 2017, Angewandte Chemie.

[12]  S. D. de Visser,et al.  Sulfoxide Synthase versus Cysteine Dioxygenase Reactivity in a Nonheme Iron Enzyme. , 2017, Journal of the American Chemical Society.

[13]  C. Hertweck,et al.  Enzymatic Carbon-Sulfur Bond Formation in Natural Product Biosynthesis. , 2017, Chemical reviews.

[14]  F. Seebeck,et al.  Conversion of a non-heme iron-dependent sulfoxide synthase into a thiol dioxygenase by a single point mutation. , 2016, Chemical communications.

[15]  Robert D. Finn,et al.  The Pfam protein families database: towards a more sustainable future , 2015, Nucleic Acids Res..

[16]  Heng Song,et al.  Mechanistic studies of a novel C-S lyase in ergothioneine biosynthesis: the involvement of a sulfenic acid intermediate , 2015, Scientific Reports.

[17]  W. Blankenfeldt,et al.  Structure of the Ergothioneine‐Biosynthesis Amidohydrolase EgtC , 2015, Chembiochem : a European journal of chemical biology.

[18]  W. Blankenfeldt,et al.  Structure of the sulfoxide synthase EgtB from the ergothioneine biosynthetic pathway. , 2015, Angewandte Chemie.

[19]  W. Blankenfeldt,et al.  Ergothioneine Biosynthetic Methyltransferase EgtD Reveals the Structural Basis of Aromatic Amino Acid Betaine Biosynthesis , 2015, Chembiochem : a European journal of chemical biology.

[20]  S. Elliott,et al.  Bioinformatic and Biochemical Characterizations of C–S Bond Formation and Cleavage Enzymes in the Fungus Neurospora crassa Ergothioneine Biosynthetic Pathway , 2014, Organic letters.

[21]  W. Blankenfeldt,et al.  Crystallization and preliminary X-ray analysis of the ergothioneine-biosynthetic methyltransferase EgtD. , 2014, Acta crystallographica. Section F, Structural biology communications.

[22]  Heng Song,et al.  Cysteine Oxidation Reactions Catalyzed by a Mononuclear Non-heme Iron Enzyme (OvoA) in Ovothiol Biosynthesis , 2014, Organic letters.

[23]  Heng Song,et al.  Regioselectivity of the oxidative C-S bond formation in ergothioneine and ovothiol biosyntheses. , 2013, Organic letters.

[24]  Sylvain Daunay,et al.  Cysteine as a sustainable sulfur reagent for the protecting-group-free synthesis of sulfur-containing amino acids: biomimetic synthesis of L-ergothioneine in water , 2012 .

[25]  B. Halliwell,et al.  Ergothioneine; antioxidant potential, physiological function and role in disease. , 2012, Biochimica et biophysica acta.

[26]  David Baker,et al.  De Novo Enzyme Design Using Rosetta3 , 2011, PloS one.

[27]  P. Libby,et al.  Progress and challenges in translating the biology of atherosclerosis , 2011, Nature.

[28]  F. Seebeck,et al.  Identification and characterization of the first ovothiol biosynthetic enzyme. , 2011, Journal of the American Chemical Society.

[29]  Liisa Holm,et al.  Dali server: conservation mapping in 3D , 2010, Nucleic Acids Res..

[30]  F. Seebeck In vitro reconstitution of Mycobacterial ergothioneine biosynthesis. , 2010, Journal of the American Chemical Society.

[31]  D. Kessler Enzymatic activation of sulfur for incorporation into biomolecules in prokaryotes. , 2006, FEMS microbiology reviews.

[32]  K. Delank,et al.  Association of rheumatoid arthritis with ergothioneine levels in red blood cells: a case control study. , 2006, The Journal of rheumatology.

[33]  T. Merriman,et al.  Polymorphisms in the organic cation transporter genes SLC22A4 and SLC22A5 and Crohn's disease in a New Zealand Caucasian cohort , 2006, Immunology and cell biology.

[34]  S. Golz,et al.  Discovery of the ergothioneine transporter. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[35]  J. Honek,et al.  Biological chemistry of naturally occurring thiols of microbial and marine origin. , 2005, Journal of natural products.

[36]  Bill Newman,et al.  Functional variants of OCTN cation transporter genes are associated with Crohn disease , 2004, Nature Genetics.

[37]  Yusuke Nakamura,et al.  An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis , 2003, Nature Genetics.

[38]  L. Jen,et al.  Ergothioneine treatment protects neurons against N-methyl-d-aspartate excitotoxicity in an in vivo rat retinal model , 2002, Neuroscience Letters.

[39]  E. Bruckert,et al.  Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro. , 2002, The Journal of clinical endocrinology and metabolism.

[40]  J. Pulido,et al.  Ergothioneine distribution in bovine and porcine ocular tissues. , 1997, Comparative biochemistry and physiology. Part C, Pharmacology, toxicology & endocrinology.

[41]  J. Yadan,et al.  Synthesis of L-(+)-Ergothioneine. , 1995 .

[42]  T. Mayumi,et al.  Quantitative determination of ergothioneine in plasma and tissues by TLC-densitometry. , 1980, Chemical & pharmaceutical bulletin.

[43]  I. Briggs ERGOTHIONEINE IN THE CENTRAL NERVOUS SYSTEM , 1972, Journal of neurochemistry.

[44]  V. Ekstrand,et al.  PURIFICATION AND PROPERTIES OF GLUTATHIONE REDUCTASE OF HUMAN ERYTHROCYTES. , 1963, The Journal of biological chemistry.

[45]  T. Mann,et al.  Ergothioneine in the Seminal Vesicle Secretion , 1951, Nature.

[46]  R. C. Fahey,et al.  Novel thiols of prokaryotes. , 2001, Annual review of microbiology.

[47]  P. Hartman Ergothioneine as antioxidant. , 1990, Methods in enzymology.

[48]  G. Woodruff,et al.  The presence of ergothioneine in the central nervous system and its probable identity with the cerebellar factor , 1966, The Journal of physiology.

[49]  W. H. Horner,et al.  Tissue ergothioneine. , 1954, The Journal of biological chemistry.

[50]  C. Chuong,et al.  Article type Software , 2007 .