Strong convergence theorems for approximating common fixed points of families of nonexpansive mappings and applications

An implicit algorithm for finding common fixed points of an uncountable family of nonexpansive mappings is proposed. A new inexact iteration method is also proposed for countable family of nonexpansive mappings. Several strong convergence theorems based on our main results are established in the setting of Banach spaces. Both algorithms are applied for finding zeros of accretive operators and for solving convex minimization, split feasibility and equilibrium problems.

[1]  Tosio Kato,et al.  Nonlinear semigroups and evolution equations , 1967 .

[2]  R. Rockafellar Characterization of the subdifferentials of convex functions , 1966 .

[3]  Giuseppe Marino,et al.  An implicit method for finding common solutions of variational inequalities and systems of equilibrium problems and fixed points of infinite family of nonexpansive mappings , 2009 .

[4]  G. Minty Monotone (nonlinear) operators in Hilbert space , 1962 .

[5]  C. Byrne,et al.  A unified treatment of some iterative algorithms in signal processing and image reconstruction , 2003 .

[6]  Jen-Chih Yao,et al.  Solving variational inequalities involving nonexpansive type mappings , 2008 .

[7]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[8]  Wataru Takahashi,et al.  On Reich's strong convergence theorems for resolvents of accretive operators , 1984 .

[9]  S. Reich,et al.  Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings , 1984 .

[10]  Hong-Kun Xu Iterative Algorithms for Nonlinear Operators , 2002 .

[11]  Monica Bianchi,et al.  Generalized monotone bifunctions and equilibrium problems , 1996 .

[12]  Y. Censor,et al.  Perturbed projections and subgradient projections for the multiple-sets split feasibility problem , 2007 .

[13]  J. Aubin,et al.  Differential inclusions set-valued maps and viability theory , 1984 .

[14]  C. Moore,et al.  ITERATIVE SOLUTION OF NONLINEAR EQUATIONS INVOLVING SET-VALUED UNIFORMLY ACCRETIVE OPERATORS , 2001 .

[15]  Jen-Chih Yao,et al.  A Generalized Hybrid Steepest-Descent Method for Variational Inequalities in Banach Spaces , 2011 .

[16]  B. Halpern Fixed points of nonexpanding maps , 1967 .

[17]  W. Oettli,et al.  From optimization and variational inequalities to equilibrium problems , 1994 .

[18]  Giuseppe Marino,et al.  Convergence of generalized proximal point algorithms , 2004 .

[19]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[20]  Teck-Cheong Lim,et al.  A fixed point theorem for families on nonexpansive mappings. , 1974 .

[21]  B. Martinet Brève communication. Régularisation d'inéquations variationnelles par approximations successives , 1970 .

[22]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[23]  W. Oettli A remark on vector-valued equilibria and generalized monotonicity , 1997 .

[24]  K. A. Stewart,et al.  Image Recovery¿Theory and Applications , 1987 .

[25]  Ronald E. Bruck Properties of fixed-point sets of nonexpansive mappings in Banach spaces , 1973 .

[26]  Ming Jiang,et al.  Mathematical methods in biomedical imaging and intensity-modulated radiation therapy (IMRT) , 2008 .

[27]  C. Byrne,et al.  Iterative oblique projection onto convex sets and the split feasibility problem , 2002 .

[28]  Y. Censor,et al.  The multiple-sets split feasibility problem and its applications for inverse problems , 2005 .

[29]  Hong-Kun Xu A variable Krasnosel'skii–Mann algorithm and the multiple-set split feasibility problem , 2006 .

[30]  Osman Güer On the convergence of the proximal point algorithm for convex minimization , 1991 .

[31]  Hong-Kun Xu,et al.  Construction of sunny nonexpansive retractions in Banach spaces , 2002, Bulletin of the Australian Mathematical Society.

[32]  Simeon Reich,et al.  CONSTRUCTIVE TECHNIQUES FOR ACCRETIVE AND MONOTONE OPERATORS , 1979 .

[33]  Simeon Reich,et al.  An explicit construction of sunny nonexpansive retractions in Banach spaces , 2005 .

[34]  Hong-Kun Xu,et al.  Iterative solutions for zeros of accretive operators , 2003 .

[35]  V. Barbu,et al.  Convexity and optimization in banach spaces , 1972 .

[36]  Richard J. Mammone,et al.  Image recovery by convex projections using a least-squares constraint , 1990 .

[37]  Y. Censor,et al.  A unified approach for inversion problems in intensity-modulated radiation therapy , 2006, Physics in medicine and biology.

[38]  Giuseppe Marino,et al.  KRASNOSELSKI–MANN ITERATION FOR HIERARCHICAL FIXED POINTS AND EQUILIBRIUM PROBLEM , 2009, Bulletin of the Australian Mathematical Society.

[39]  George L Allen,et al.  Variational inequalities, complementarity problems, and duality theorems , 1977 .

[40]  P. L. Combettes,et al.  Equilibrium programming in Hilbert spaces , 2005 .

[41]  M. Edelstein,et al.  Nonexpansive Mappings, Asymptotic Regularity and Successive Approximations , 1978 .

[42]  Wataru Takahashi,et al.  Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space , 2007 .

[43]  Jen-Chih Yao,et al.  The prox-Tikhonov regularization method for the proximal point algorithm in Banach spaces , 2011, J. Glob. Optim..

[44]  Laurentiu Leustean Rates of Asymptotic Regularity for Halpern Iterations of Nonexpansive Mappings , 2007, J. Univers. Comput. Sci..

[45]  Yair Censor,et al.  A multiprojection algorithm using Bregman projections in a product space , 1994, Numerical Algorithms.

[46]  A. Iusem,et al.  Iterative Algorithms for Equilibrium Problems , 2003 .

[47]  Felix E. Browder,et al.  Nonlinear mappings of nonexpansive and accretive type in Banach spaces , 1967 .

[48]  Ronald E. Bruck A strongly convergent iterative solution of 0 ϵ U(x) for a maximal monotone operator U in Hilbert space , 1974 .

[49]  高橋 渉 Nonlinear functional analysis : fixed point theory and its applications , 2000 .

[50]  H. Zegeye,et al.  Approximate fixed point sequences and convergence theorems for Lipschitz pseudocontractive maps , 2003 .

[51]  Jonathan Eckstein,et al.  Approximate iterations in Bregman-function-based proximal algorithms , 1998, Math. Program..

[52]  Paul-Emile Maingé,et al.  Viscosity methods for zeroes of accretive operators , 2006, J. Approx. Theory.

[53]  J. S. Jung,et al.  Strong convergence theorems for accretive operators in Banach spaces , 1990 .

[54]  Wataru Takahashi,et al.  Approximating Solutions of Maximal Monotone Operators in Hilbert Spaces , 2000 .

[55]  Dante C. Youla,et al.  On deterministic convergence of iterations of relaxed projection operators , 1990, J. Vis. Commun. Image Represent..

[56]  Laurentiu Leustean,et al.  Alternative iterative methods for nonexpansive mappings, rates of convergence and applications , 2009, 0905.4836.

[57]  Hong-Kun Xu Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces , 2010 .