Active Far-Field Control of the Thermal Near-Field via Plasmon Hybridization.

The ability to control and manipulate temperature at nanoscale dimensions has the potential to impact applications including heat-assisted magnetic recording, photothermal therapies, and temperature-driven reactivity. One challenge with controlling temperature at nanometer dimensions is the need to mitigate heat diffusion, such that the temperature only changes in well-defined nanoscopic regions of the sample. Here we demonstrate the ability to use far-field laser excitation to actively shape the thermal near-field in individual gold nanorod heterodimers by resonantly pumping either the in-phase or out-of-phase hybridized dipole plasmon modes. Using single-particle photothermal heterodyne imaging, we demonstrate localization bias in the photothermal intensity due to preferential heating of one of the rods within the pair. Theoretical modeling and numerical simulation make explicit how the resulting photothermal images encode wavelength-dependent temperature biases between each nanorod within a dimer, demonstrating the ability to actively manage the thermal near-field by simply tuning the color of incident light.

[1]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[2]  X. Xi,et al.  Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces. , 2019, ACS nano.

[3]  Jinliang Xu,et al.  Plasmon heating of one-dimensional gold nanoparticle chains , 2018, Solar Energy.

[4]  J. Yamamoto,et al.  Creation of large, periodic temperature gradient via plasmonic heating from mesoscopic planar lattice of metal domains , 2017 .

[5]  S. Mensah,et al.  Isosbestic Thermoplasmonic Nanostructures , 2017 .

[6]  P. Nordlander,et al.  Absorption Spectroscopy of an Individual Fano Cluster. , 2016, Nano letters.

[7]  Jeremy P. Sauer,et al.  Plasmonic activation of gold nanorods for remote stimulation of calcium signaling and protein expression in HEK 293T cells , 2016, Biotechnology and bioengineering.

[8]  Charles R Cherqui,et al.  Imaging Plasmon Hybridization in Metal Nanoparticle Aggregates with Electron Energy-Loss Spectroscopy , 2016 .

[9]  J. Valentine,et al.  Localization of Excess Temperature Using Plasmonic Hot Spots in Metal Nanostructures: Combining Nano-Optical Antennas with the Fano Effect , 2016, 1604.03585.

[10]  R. Victora,et al.  Optical modeling of media for heat assisted magnetic recording , 2016 .

[11]  G. Hajisalem,et al.  Nanorod Surface Plasmon Enhancement of Laser-Induced Ultrafast Demagnetization , 2015, Scientific Reports.

[12]  S. Link,et al.  Single-particle absorption spectroscopy by photothermal contrast. , 2015, Nano letters.

[13]  Z. Cen,et al.  Thermal effects on transducer material for heat assisted magnetic recording application , 2015 .

[14]  Charles R Cherqui,et al.  Combined Tight-Binding and Numerical Electrodynamics Understanding of the STEM/EELS Magneto-optical Responses of Aromatic Plasmon-Supporting Metal Oligomers , 2014 .

[15]  Peter Nordlander,et al.  Nanoparticles heat through light localization. , 2014, Nano letters.

[16]  Werner Scholz,et al.  Plasmonic near-field transducer for heat-assisted magnetic recording , 2014 .

[17]  Stefan A. Maier,et al.  Electric and Magnetic Field Enhancement with Ultralow Heat Radiation Dielectric Nanoantennas: Considerations for Surface-Enhanced Spectroscopies , 2014 .

[18]  C. Baldwin,et al.  Thermal Signatures of Plasmonic Fano Interferences: Toward the Achievement of Nanolocalized Temperature Manipulation. , 2014, The journal of physical chemistry letters.

[19]  Serge Monneret,et al.  Super-Heating and Micro-Bubble Generation around Plasmonic Nanoparticles under cw Illumination , 2014 .

[20]  Serge Monneret,et al.  Photoinduced heating of nanoparticle arrays. , 2013, ACS nano.

[21]  Albert Polman,et al.  Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. , 2013, Nano letters.

[22]  Romain Quidant,et al.  Thermo‐plasmonics: using metallic nanostructures as nano‐sources of heat , 2013 .

[23]  Wei Li,et al.  Probing and controlling photothermal heat generation in plasmonic nanostructures. , 2013, Nano letters.

[24]  Peter Nordlander,et al.  Solar vapor generation enabled by nanoparticles. , 2013, ACS nano.

[25]  Stephan Link,et al.  Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio. , 2012, ACS nano.

[26]  Romain Quidant,et al.  Plasmon-assisted optofluidics. , 2011, ACS nano.

[27]  F. Cichos,et al.  Gaussian beam photothermal single particle microscopy. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[28]  Gregory V Hartland,et al.  Optical studies of dynamics in noble metal nanostructures. , 2011, Chemical reviews.

[29]  Mustafa Yorulmaz,et al.  Detection limits in photothermal microscopy , 2010 .

[30]  G. Baffou,et al.  Mapping heat origin in plasmonic structures. , 2010, Physical review letters.

[31]  S. Link,et al.  Single-Particle Spectroscopy of Gold Nanorods beyond the Quasi-Static Limit: Varying the Width at Constant Aspect Ratio , 2010 .

[32]  Romain Quidant,et al.  Nanoscale control of optical heating in complex plasmonic systems. , 2010, ACS nano.

[33]  R. V. Van Duyne,et al.  Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. , 2008, Journal of the American Chemical Society.

[34]  Gerhard A Blab,et al.  Photothermal heterodyne imaging of individual nonfluorescent nanoclusters and nanocrystals. , 2004, Physical review letters.

[35]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[36]  D. Choquet,et al.  Single metallic nanoparticle imaging for protein detection in cells , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Friedman,et al.  Virus-Assisted Mapping of Neural Inputs to a Feeding Center in the Hypothalamus , 2001, Science.

[38]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[39]  D. Julius,et al.  The capsaicin receptor: a heat-activated ion channel in the pain pathway , 1997, Nature.

[40]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[41]  E. Purcell,et al.  Scattering and Absorption of Light by Nonspherical Dielectric Grains , 1973 .