Estimates of the Regression Coefficient Based on Kendall's Tau
暂无分享,去创建一个
[1] M. Kendall. Rank Correlation Methods , 1949 .
[2] W. Hoeffding. A Class of Statistics with Asymptotically Normal Distribution , 1948 .
[3] J. Wolfowitz,et al. Introduction to the Theory of Statistics. , 1951 .
[4] F. Graybill. An introduction to linear statistical models , 1961 .
[5] J. L. Hodges,et al. Estimates of Location Based on Rank Tests , 1963 .
[6] E. L. Lehmann,et al. Nonparametric Confidence Intervals for a Shift Parameter , 1963 .
[7] F. Eicker. Asymptotic Normality and Consistency of the Least Squares Estimators for Families of Linear Regressions , 1963 .
[8] Pranab Kumar Sen,et al. On the Estimation of Relative Potency in Dilution (-Direct) Assays by Distribution-Free Methods , 1963 .
[9] Pranab Kumar Sen,et al. On a Distribution-free Method of Estimating Asymptotic Efficiency of a Class of Non-parametric Tests , 1966 .
[10] J. N. Adichie. ESTIMATES OF REGRESSION PARAMETERS BASED ON RANK TESTS , 1967 .
[11] J. Walsh. Elements of Nonparametric Statistics , 1968 .