Prandtl and Rayleigh number dependence of heat transport in high Rayleigh number thermal convection

Abstract Results from direct numerical simulation for three-dimensional Rayleigh–Bénard convection in samples of aspect ratio $\Gamma = 0. 23$ and $\Gamma = 1/ 2$ up to Rayleigh number $\mathit{Ra}= 2\ensuremath{\times} 1{0}^{12} $ are presented. The broad range of Prandtl numbers $0. 5\lt \mathit{Pr}\lt 10$ is considered. In contrast to some experiments, we do not see any increase in $\mathit{Nu}/ {\mathit{Ra}}^{1/ 3} $ with increasing $\mathit{Ra}$, neither due to an increasing $\mathit{Pr}$, nor due to constant heat flux boundary conditions at the bottom plate instead of constant temperature boundary conditions. Even at these very high $\mathit{Ra}$, both the thermal and kinetic boundary layer thicknesses obey Prandtl–Blasius scaling.

[1]  R. Camussi,et al.  Transitional regimes of low-Prandtl thermal convection in a cylindrical cell , 1997 .

[2]  Katepalli R. Sreenivasan,et al.  The wind in confined thermal convection , 2001, Journal of Fluid Mechanics.

[3]  G. Ahlers,et al.  Prandtl-number dependence of heat transport in turbulent Rayleigh-Bénard convection. , 2001, Physical review letters.

[4]  Detlef Lohse,et al.  Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection , 2008, 0811.0471.

[5]  J. Niemela,et al.  Confined turbulent convection , 2002, Journal of Fluid Mechanics.

[6]  Roberto Verzicco,et al.  A comparison of turbulent thermal convection between conditions of constant temperature and constant heat flux , 2008, Journal of Fluid Mechanics.

[7]  G. Ahlers,et al.  Turbulent Rayleigh–Bénard convection in a cylindrical container with aspect ratio Γ = 0.50 and Prandtl number Pr = 4.38 , 2011, Journal of Fluid Mechanics.

[8]  D. Funfschilling,et al.  Transitions in heat transport by turbulent convection at Rayleigh numbers up to 1015 , 2009 .

[9]  Detlef Lohse,et al.  Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection , 2009, Journal of Fluid Mechanics.

[10]  D. Lohse,et al.  Prandtl–Blasius temperature and velocity boundary-layer profiles in turbulent Rayleigh–Bénard convection , 2010, Journal of Fluid Mechanics.

[11]  K. Xia,et al.  Experimental studies of the viscous boundary layer properties in turbulent Rayleigh–Bénard convection , 2008, Journal of Fluid Mechanics.

[12]  Experimental evidence of a phase transition in a closed turbulent flow. , 2010, Physical review letters.

[13]  B. Castaing,et al.  Long relaxation times and tilt sensitivity in Rayleigh Bénard turbulence , 2004 .

[14]  D. Lohse,et al.  Thermal convection for large Prandtl numbers. , 2000, Physical review letters.

[15]  Sheng‐Qi Zhou,et al.  Heat-flux measurement in high-Prandtl-number turbulent Rayleigh-Bénard convection. , 2002, Physical review letters.

[16]  Hans Johnston,et al.  Comparison of turbulent thermal convection between conditions of constant temperature and constant flux. , 2008, Physical review letters.

[17]  Quan Zhou,et al.  Measured instantaneous viscous boundary layer in turbulent Rayleigh-Bénard convection. , 2009, Physical review letters.

[18]  Eberhard Bodenschatz,et al.  Turbulent Rayleigh–Bénard convection for a Prandtl number of 0.67 , 2009, Journal of Fluid Mechanics.

[19]  Chao Sun,et al.  Azimuthal symmetry, flow dynamics, and heat transport in turbulent thermal convection in a cylinder with an aspect ratio of 0.5. , 2005, Physical review letters.

[20]  D. Lohse,et al.  Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  F. Chillà,et al.  Turbulent Rayleigh–Bénard convection in gaseous and liquid He , 2001 .

[22]  D. Funfschilling,et al.  Search for the "ultimate state" in turbulent Rayleigh-Bénard convection. , 2009, Physical review letters.

[23]  B. Chabaud,et al.  Prandtl and Rayleigh numbers dependences in Rayleigh-Bénard convection , 2002 .

[24]  Roberto Verzicco,et al.  Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell , 2003, Journal of Fluid Mechanics.

[25]  D. Lohse,et al.  Connecting flow structures and heat flux in turbulent Rayleigh-Bénard convection. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  G. Ahlers,et al.  Onset of Rayleigh-Bénard convection in cylindrical containers. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  K. Xia,et al.  Flow mode transitions in turbulent thermal convection , 2008 .

[28]  K. Xia,et al.  Viscous boundary layers at the sidewall of a convection cell , 1998 .

[29]  K. R. Sreenivasan,et al.  Turbulent convection at very high Rayleigh numbers , 1999, Nature.

[30]  D. Lohse,et al.  Multiple scaling in the ultimate regime of thermal convection , 2011 .

[31]  D. Lohse,et al.  Boundary layers in rotating weakly turbulent Rayleigh–Bénard convection , 2010, Physics of Fluids.

[32]  Does confined turbulent convection ever attain the 'asymptotic scaling' with 1/2 power? , 2010 .

[33]  D. Lohse,et al.  Fluctuations in turbulent Rayleigh-Bénard convection: The role of plumes , 2004 .

[34]  Richard J. A. M. Stevens,et al.  Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution , 2010, 1109.6870.

[35]  S. Grossmann Scaling in thermal convection: A unifying view , 2022 .

[36]  B. Castaing,et al.  Observation of the 1/2 power law in Rayleigh-Bénard convection. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Katepalli R. Sreenivasan,et al.  Turbulent convection at high Rayleigh numbers and aspect ratio 4 , 2006, Journal of Fluid Mechanics.

[38]  Detlef Lohse,et al.  Scaling in thermal convection: a unifying theory , 2000, Journal of Fluid Mechanics.

[39]  Robert Kaiser,et al.  On the triggering of the Ultimate Regime of convection , 2012, 1202.0661.

[40]  A. Thess,et al.  Mean temperature profiles in turbulent Rayleigh–Bénard convection of water , 2009, Journal of Fluid Mechanics.