State of play in amyotrophic lateral sclerosis genetics

Considerable progress has been made in unraveling the genetic etiology of amyotrophic lateral sclerosis (ALS), the most common form of adult-onset motor neuron disease and the third most common neurodegenerative disease overall. Here we review genes implicated in the pathogenesis of motor neuron degeneration and how this new information is changing the way we think about this fatal disorder. Specifically, we summarize current literature of the major genes underlying ALS, SOD1, TARDBP, FUS, OPTN, VCP, UBQLN2, C9ORF72 and PFN1, and evaluate the information being gleaned from genome-wide association studies. We also outline emerging themes in ALS research, such as next-generation sequencing approaches to identify de novo mutations, the genetic convergence of familial and sporadic ALS, the proposed oligogenic basis for the disease, and how each new genetic discovery is broadening the phenotype associated with the clinical entity we know as ALS.

[1]  John Q. Trojanowski,et al.  Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS , 2010, Nature.

[2]  Leonard H van den Berg,et al.  Evidence for an oligogenic basis of amyotrophic lateral sclerosis. , 2012, Human molecular genetics.

[3]  A. Farmer,et al.  Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome-wide association study , 2010, The Lancet Neurology.

[4]  Robert H. Brown,et al.  Amyotrophic Lateral Sclerosis-Associated SOD1 Mutant Proteins Bind and Aggregate with Bcl-2 in Spinal Cord Mitochondria , 2004, Neuron.

[5]  Nick C Fox,et al.  Pathogenic VCP Mutations Induce Mitochondrial Uncoupling and Reduced ATP Levels , 2013, Neuron.

[6]  J. Haines,et al.  Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis , 1993, Nature.

[7]  Janel O. Johnson,et al.  Large proportion of amyotrophic lateral sclerosis cases in Sardinia due to a single founder mutation of the TARDBP gene. , 2011, Archives of neurology.

[8]  L. Mulligan,et al.  De Novo Mutation of GDNF, Ligand for the RET/GDNFR-α Receptor Complex, in Hirschsprung Disease , 1996 .

[9]  A. Goris,et al.  EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans , 2012, Nature Medicine.

[10]  Patrizia Sola,et al.  Exome Sequencing Reveals VCP Mutations as a Cause of Familial ALS , 2011, Neuron.

[11]  A. Chiò,et al.  A de novo missense mutation of the FUS gene in a “true” sporadic ALS case , 2011, Neurobiology of Aging.

[12]  V. Meininger,et al.  SOD1, ANG, VAPB, TARDBP, and FUS mutations in familial amyotrophic lateral sclerosis: genotype–phenotype correlations , 2010, Journal of Medical Genetics.

[13]  M. Farrer,et al.  DCTN1 mutations in Perry syndrome , 2009, Nature Genetics.

[14]  Carl D Langefeld,et al.  Age of onset of amyotrophic lateral sclerosis is modulated by a locus on 1p34.1 , 2013, Neurobiology of Aging.

[15]  B. Traynor,et al.  Genetics of sporadic amyotrophic lateral sclerosis. , 2007, Human molecular genetics.

[16]  Pedagógia,et al.  Cross Sectional Study , 2019 .

[17]  A. Ludolph,et al.  Amyotrophic lateral sclerosis. , 2012, Current opinion in neurology.

[18]  P. Andersen,et al.  Autosomal recessive adult-onset amyotrophic lateral sclerosis associated with homozygosity for Asp90Ala CuZn-superoxide dismutase mutation. A clinical and genealogical study of 36 patients. , 1996, Brain : a journal of neurology.

[19]  R. Ritch,et al.  Adult-Onset Primary Open-Angle Glaucoma Caused by Mutations in Optineurin , 2002, Science.

[20]  S. Ennis,et al.  A novel candidate region for ALS on chromosome 14q11.2 , 2004, Neurology.

[21]  Peter K. Todd,et al.  CGG Repeat-Associated Translation Mediates Neurodegeneration in Fragile X Tremor Ataxia Syndrome , 2013, Neuron.

[22]  E. Bertini,et al.  Infantile-onset ascending hereditary spastic paralysis is associated with mutations in the alsin gene. , 2002, American journal of human genetics.

[23]  F. Marrosu,et al.  Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72. , 2012, Brain : a journal of neurology.

[24]  G. Crabtree,et al.  Exome sequencing to identify de novo mutations in sporadic ALS trios , 2013, Nature Neuroscience.

[25]  Edwin Cuppen,et al.  Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis , 2011, Annals of neurology.

[26]  R. Ophoff,et al.  ITPR2 as a susceptibility gene in sporadic amyotrophic lateral sclerosis: a genome-wide association study , 2007, The Lancet Neurology.

[27]  S. Hadano,et al.  A gene encoding a putative GTPase regulator is mutated in familial amyotrophic lateral sclerosis 2 , 2001, Nature Genetics.

[28]  Z. Wszolek,et al.  De novo truncating FUS gene mutation as a cause of sporadic amyotrophic lateral sclerosis , 2010, Human mutation.

[29]  D. Labuda,et al.  Mutations in senataxin responsible for Quebec cluster of ataxia with neuropathy , 2005, Annals of neurology.

[30]  Kuixing Zhang,et al.  Whole-genome analysis of sporadic amyotrophic lateral sclerosis. , 2007, The New England journal of medicine.

[31]  J. Haines,et al.  Mutations in UBQLN2 cause dominant X-linked juvenile and adult onset ALS and ALS/dementia , 2011, Nature.

[32]  Ewout J N Groen,et al.  Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis , 2009, Nature Genetics.

[33]  N. Ertekin-Taner,et al.  Novel p.Ile151Val mutation in VCP in a patient of African American descent with sporadic ALS , 2011, Neurology.

[34]  V. Meininger,et al.  Guidelines for the preclinical in vivo evaluation of pharmacological active drugs for ALS/MND: Report on the 142nd ENMC international workshop , 2007, Amyotrophic lateral sclerosis : official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases.

[35]  V. Meininger,et al.  Mutations in SQSTM1 encoding p62 in amyotrophic lateral sclerosis: genetics and neuropathology , 2013, Acta Neuropathologica.

[36]  Takeo Kato,et al.  Mutations of optineurin in amyotrophic lateral sclerosis , 2010, Nature.

[37]  S. Ajroud‐Driss,et al.  SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. , 2011, Archives of neurology.

[38]  P. S. St George-Hyslop,et al.  SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis , 2012, Neurology.

[39]  G. Rouleau,et al.  Analysis of the UNC13A gene as a risk factor for sporadic amyotrophic lateral sclerosis. , 2010, Archives of neurology.

[40]  Bruce L. Miller,et al.  Ubiquitinated TDP-43 in Frontotemporal Lobar Degeneration and Amyotrophic Lateral Sclerosis , 2006, Science.

[41]  T. Gillingwater,et al.  A mutation in the vesicle-trafficking protein VAPB causes late-onset spinal muscular atrophy and amyotrophic lateral sclerosis. , 2004, American journal of human genetics.

[42]  S. C. Chafe,et al.  Mutations in the Profilin 1 Gene Cause Familial Amyotrophic Lateral Sclerosis , 2012, Nature.

[43]  A. Brice,et al.  Mutations in the PFN1 gene are not a common cause in patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration in France , 2013, Neurobiology of Aging.

[44]  Janel O. Johnson,et al.  Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study , 2012, The Lancet Neurology.

[45]  N. Morton,et al.  Segregation analysis of peripheral neurofibromatosis (NF1). , 1990, Journal of medical genetics.

[46]  Sonja W. Scholz,et al.  A two-stage genome-wide association study of sporadic amyotrophic lateral sclerosis. , 2009, Human molecular genetics.

[47]  J L Haines,et al.  Supporting Online Material Materials and Methods Figs. S1 to S7 Tables S1 to S4 References Mutations in the Fus/tls Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis , 2022 .

[48]  P. Tacconi,et al.  ALS/FTD phenotype in two Sardinian families carrying both C9ORF72 and TARDBP mutations , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[49]  David Heckerman,et al.  Chromosome 9p21 in amyotrophic lateral sclerosis in Finland: a genome-wide association study , 2010, The Lancet Neurology.

[50]  E. Laplantine,et al.  Toward an integrative view of Optineurin functions , 2012, Cell cycle.

[51]  M. Swash,et al.  Controversies and priorities in amyotrophic lateral sclerosis , 2013, The Lancet Neurology.

[52]  E. Mohammadi,et al.  Barriers and facilitators related to the implementation of a physiological track and trigger system: A systematic review of the qualitative evidence , 2017, International journal for quality in health care : journal of the International Society for Quality in Health Care.

[53]  A. Al-Chalabi,et al.  New VAPB deletion variant and exclusion of VAPB mutations in familial ALS , 2008, Neurology.

[54]  J. Collinge,et al.  ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B) , 2006, Neurology.

[55]  Claire L. Simpson,et al.  Reduced expression of the Kinesin-Associated Protein 3 (KIFAP3) gene increases survival in sporadic amyotrophic lateral sclerosis , 2009, Proceedings of the National Academy of Sciences.

[56]  C. Tanner,et al.  A High-Density Genome-Wide Association Screen of Sporadic ALS in US Veterans , 2012, PloS one.

[57]  Nick C Fox,et al.  Large C9orf72 hexanucleotide repeat expansions are seen in multiple neurodegenerative syndromes and are more frequent than expected in the UK population. , 2013, American journal of human genetics.

[58]  A. Chiò,et al.  Genetic counselling in ALS: facts, uncertainties and clinical suggestions , 2013, Journal of Neurology, Neurosurgery & Psychiatry.

[59]  S. Donato Faculty Opinions recommendation of An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. , 2013 .

[60]  J. Powell,et al.  No association of DPP6 with amyotrophic lateral sclerosis in an Italian population , 2011, Neurobiology of Aging.

[61]  A. Pestronk,et al.  Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein , 2004, Nature Genetics.

[62]  Liangdan Sun,et al.  Genome-wide association analyses in Han Chinese identify two new susceptibility loci for amyotrophic lateral sclerosis , 2013, Nature Genetics.

[63]  Paul G. Ince,et al.  Mutations in CHMP2B in Lower Motor Neuron Predominant Amyotrophic Lateral Sclerosis (ALS) , 2010, PloS one.

[64]  H. Horvitz,et al.  Epidemiology of mutations in superoxide dismutase in amyotrophic lateal sclerosis , 1997, Annals of neurology.

[65]  A Al-Chalabi,et al.  Distinct cerebral lesions in sporadic and 'D90A' SOD1 ALS: studies with [11C]flumazenil PET. , 2005, Brain : a journal of neurology.

[66]  A. Singleton,et al.  Amyotrophic Lateral Sclerosis: An Emerging Era of Collaborative Gene Discovery , 2007, PloS one.

[67]  G. Parkinson,et al.  C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes , 2012, Scientific Reports.

[68]  R. Gross Extensive genetics of ALS: A population-based study in Italy , 2012 .

[69]  F. Pasquier,et al.  C9orf72 repeat expansions are a rare genetic cause of parkinsonism. , 2013, Brain : a journal of neurology.

[70]  William D Fraser,et al.  Genome wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget’s disease of bone , 2010, Nature Genetics.

[71]  Frank Baas,et al.  Genetic variation in DPP6 is associated with susceptibility to amyotrophic lateral sclerosis , 2008, Nature Genetics.

[72]  John P A Ioannidis,et al.  Meta-analysis in genome-wide association studies. , 2009, Pharmacogenomics.

[73]  Xun Hu,et al.  Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6 , 2009, Science.

[74]  Orla Hardiman,et al.  “True” sporadic ALS associated with a novel SOD‐1 mutation , 2002, Annals of neurology.

[75]  A. Chiò,et al.  Amyotrophic lateral sclerosis-frontotemporal lobar dementia in 3 families with p.Ala382Thr TARDBP mutations. , 2010, Archives of neurology.

[76]  Jacques P. Brown,et al.  Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. , 2002, American journal of human genetics.

[77]  David Heckerman,et al.  A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD , 2011, Neuron.

[78]  Bruce L. Miller,et al.  Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS , 2011, Neuron.

[79]  S. Ennis,et al.  ANG mutations segregate with familial and 'sporadic' amyotrophic lateral sclerosis , 2006, Nature Genetics.

[80]  A. Singleton,et al.  Repeat expansion in C9ORF72 in Alzheimer's disease. , 2012, The New England journal of medicine.

[81]  A. Chiò,et al.  Prevalence of SOD1 mutations in the Italian ALS population , 2008, Neurology.

[82]  E. Brustein,et al.  FUS and TARDBP but Not SOD1 Interact in Genetic Models of Amyotrophic Lateral Sclerosis , 2011, PLoS genetics.

[83]  V. Meininger,et al.  UBQLN2 mutations are rare in French and French–Canadian amyotrophic lateral sclerosis , 2012, Neurobiology of Aging.

[84]  B. Dubois,et al.  Expanded ATXN2 CAG repeat size in ALS identifies genetic overlap between ALS and SCA2 , 2011, Neurology.

[85]  Shin J. Oh,et al.  Mutant dynactin in motor neuron disease , 2003, Nature Genetics.

[86]  Antonio Gambardella,et al.  Amyotrophic lateral sclerosis: a new missense mutation in the SOD1 gene , 2013, Neurobiology of Aging.

[87]  J. Alappat ETHNIC VARIATION IN THE INCIDENCE OF ALS: A SYSTEMATIC REVIEW , 2007, Neurology.

[88]  田原 康玄,et al.  生活習慣病とgenome-wide association study , 2015 .

[89]  Michael Benatar,et al.  Prion-like domain mutations in hnRNPs cause multisystem proteinopathy and ALS , 2013, Nature.

[90]  Holger Hummerich,et al.  Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia , 2005, Nature Genetics.

[91]  Janel O. Johnson,et al.  Kinesin-associated protein 3 (KIFAP3) has no effect on survival in a population-based cohort of ALS patients , 2010, Proceedings of the National Academy of Sciences.

[92]  Ewout J. N. Groen,et al.  VCP mutations in familial and sporadic amyotrophic lateral sclerosis , 2012, Neurobiology of Aging.

[93]  Orla Hardiman,et al.  A genome-wide association study of sporadic ALS in a homogenous Irish population. , 2007, Human molecular genetics.

[94]  P. Andersen Amyotrophic lateral sclerosis associated with mutations in the CuZn superoxide dismutase gene , 2006, Current neurology and neuroscience reports.

[95]  Sonja W. Scholz,et al.  Genome-wide genotyping in amyotrophic lateral sclerosis and neurologically normal controls: first stage analysis and public release of data , 2007, The Lancet Neurology.

[96]  Mohamad Saad,et al.  Imputation of sequence variants for identification of genetic risks for Parkinson's disease: a meta-analysis of genome-wide association studies , 2011, The Lancet.

[97]  A. Farmer,et al.  Chromosome 9p21 in sporadic amyotrophic lateral sclerosis in the UK and seven other countries: a genome-wide association study , 2010, The Lancet Neurology.

[98]  L. Mulligan,et al.  De novo mutation of GDNF, ligand for the RET/GDNFR-alpha receptor complex, in Hirschsprung disease. , 1996, Human molecular genetics.

[99]  Robert H. Brown,et al.  Deleterious variants of FIG4, a phosphoinositide phosphatase, in patients with ALS. , 2009, American journal of human genetics.

[100]  A. Pestronk,et al.  An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study , 2013, The Lancet Neurology.

[101]  Xun Hu,et al.  TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis , 2008, Science.

[102]  J. Trojanowski,et al.  Pathological TDP‐43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations , 2007, Annals of neurology.

[103]  Nick C Fox,et al.  Common variants in ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease , 2011, Nature Genetics.

[104]  E. Rogaeva,et al.  Hypermethylation of the CpG island near the G4C2 repeat in ALS with a C9orf72 expansion. , 2013, American journal of human genetics.

[105]  E. Kremmer,et al.  The C9orf72 GGGGCC Repeat Is Translated into Aggregating Dipeptide-Repeat Proteins in FTLD/ALS , 2013, Science.

[106]  John W Griffin,et al.  DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). , 2004, American journal of human genetics.

[107]  Stephanie C Huelga,et al.  Divergent roles of ALS-linked proteins FUS/TLS and TDP-43 intersect in processing long pre-mRNAs , 2012, Nature Neuroscience.

[108]  C. Shaw,et al.  Familial amyotrophic lateral sclerosis is associated with a mutation in D-amino acid oxidase , 2010, Proceedings of the National Academy of Sciences.