Automation of differential blood count

A technique for automating the differential count of blood is presented. The proposed system takes, as input, color images of stained peripheral blood smears and identifies the class of each of the white blood cells (WBC), in order to determine the count of cells in each class. The process involves segmentation, feature extraction and classification. WBC segmentation is a two-step process carried out on the HSV-equivalent of the image, using k-means clustering followed by the EM-algorithm. Features extracted from the segmented cytoplasm and nucleus, are motivated by the visual cues of shape, color and texture. Various classifiers have been explored on different combinations of feature sets. The results presented are based on trials conducted with normal cells. For training the classifiers, a library set of 50 patterns, with about 10 samples from each class, is used. The test data, disjoint from the training set, consists of 34 patterns, fairly represented by every class. The best classification accuracy of 97% is obtained using neural networks, followed by 94% using SVM.

[1]  Rafael C. González,et al.  Local Determination of a Moving Contrast Edge , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  S. Beksac,et al.  Feature extraction and classification of blood cells for an automated differential blood count system , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[3]  Samir I. Shaheen,et al.  Segmentation and classification of white blood cells , 2000, 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100).

[4]  Yair Weiss,et al.  Motion Segmentation using EM - a short tutorial , 1996 .

[5]  Vassili A. Kovalev,et al.  Robust recognition of white blood cell images , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[6]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Shengrui Wang,et al.  Computational measures corresponding to perceptual textural features , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[8]  I. Cseke,et al.  A fast segmentation scheme for white blood cell images , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol. III. Conference C: Image, Speech and Signal Analysis,.

[9]  Claus-E. Liedtke,et al.  Segmentation of blood smears by hierarchical thresholding , 1984, Comput. Vis. Graph. Image Process..

[10]  Anil K. Jain,et al.  Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.

[11]  James M. Keller,et al.  Fuzzy patch label relaxation in bone marrow cell segmentation , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.