Synthesis, spectral characterization and larvicidal activity of acridin-1(2H)-one analogues.

[1]  R. Subashini,et al.  Solvent-free synthesis and antibacterial studies of some quinolinones , 2012, Monatshefte für Chemie - Chemical Monthly.

[2]  S. Roopan,et al.  SnO2 nanoparticles mediated nontraditional synthesis of biologically active 9-chloro-6,13-dihydro-7-phenyl-5H-indolo [3,2-c]-acridine derivatives , 2011, Medicinal Chemistry Research.

[3]  M. Swaminathan,et al.  TiO2–SO42− as a novel solid acid catalyst for highly efficient, solvent free and easy synthesis of chalcones under microwave irradiation , 2011 .

[4]  C. Khobragade,et al.  Synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti-inflammatory and antioxidant agents. , 2010, Bioorganic & medicinal chemistry.

[5]  A. A. Rahuman,et al.  Larvicidal potential of medicinal plant extracts against Anopheles subpictus Grassi and Culex tritaeniorhynchus Giles (Diptera: Culicidae) , 2009, Parasitology Research.

[6]  T. Dhole,et al.  Preventive strategies for frequent outbreaks of Japanese encephalitis in Northern India , 2008, Journal of Biosciences.

[7]  T. Maiyalagan,et al.  Solvent-free syntheses of some quinazolin-4(3H)- ones derivatives , 2008 .

[8]  Kaliyaperumal Karunamoorthi,et al.  Evaluation of leaf extracts of Vitex negundo L. (Family: Verbenaceae) against larvae of Culex tritaeniorhynchus and repellent activity on adult vector mosquitoes , 2008, Parasitology Research.

[9]  N. Komalamisra,et al.  Formulation of tablets from the crude extract of Rhinacanthus nasutus (Thai local plant) against Aedes aegypti and Culex quinquefasciatus larvae: a preliminary study. , 2006, The Southeast Asian journal of tropical medicine and public health.

[10]  H. Cetin,et al.  Larvicidal activity of a botanical natural product, AkseBio2, against Culex pipiens. , 2004, Fitoterapia.

[11]  Janet Hemingway,et al.  The molecular basis of insecticide resistance in mosquitoes. , 2004, Insect biochemistry and molecular biology.

[12]  Fei Li,et al.  Mutations in acetylcholinesterase associated with insecticide resistance in the cotton aphid, Aphis gossypii Glover. , 2004, Insect biochemistry and molecular biology.

[13]  P. Magnussen,et al.  Management of Patients with Lymphoedema Caused by Filariasis in North-eastern Tanzania , 2003 .

[14]  S. Sebti,et al.  Dramatic activity enhancement of natural phosphate catalyst by lithium nitrate. An efficient synthesis of chalcones , 2002 .

[15]  J. Riou,et al.  From amsacrine to DACA (N-[2-(dimethylamino)ethyl]acridine-4-carboxamide): selectivity for topoisomerases I and II among acridine derivatives. , 1996, European journal of cancer.

[16]  Singh Kv,et al.  Susceptibility status of two species of Japanese encephalitis vectors to insecticides in the Thar desert, district Bikaner (Rajasthan). , 1995 .

[17]  K. Kobashi,et al.  High paraoxon-hydrolyzing activity in organophosphorus insecticide-resistant mosquitoes. , 1991, Chemical & pharmaceutical bulletin.

[18]  A. Chandramuki,et al.  Laboratory diagnosis of japanese encephalitis using monoclonal antibodies and correlation of findings with the outcome , 1989, Journal of medical virology.

[19]  F. Koehn,et al.  Dercitine, a new biologically active acridine alkaloid from a deep water marine sponge, Dercitus sp , 1988 .

[20]  W. Denny,et al.  Potential antitumor agents. 16.4'-(Acridin-9-ylamino)methanesulfonanilides. , 1975, Journal of medicinal chemistry.

[21]  P. Crews,et al.  Novel marine sponge alkaloids. 1. Plakinidine A and B, anthelmintic active alkaloids from a Plakortis sponge , 1990 .