A syntactic commutativity format for SOS

Considering operators defined using Structural Operational Semantics (SOS), commutativity axioms are intuitive properties that hold for many of them. Proving this intuition is usually a laborious task, requiring several pages of boring and standard proof. To save this effort, we propose a syntactic SOS format which guarantees commutativity for a set of composition operators.

[1]  Wan Fokkink,et al.  Ntyft/Ntyxt Rules Reduce to Ntree Rules , 1996, Inf. Comput..

[2]  Jan Friso Groote,et al.  Transition System Specifications with Negative Premises , 1993, Theor. Comput. Sci..

[3]  Jan Friso Groote,et al.  Structured Operational Semantics and Bisimulation as a Congruence , 1992, Inf. Comput..

[4]  Chris Verhoef,et al.  A General Conservative Extension Theorem in Process Algebra , 1994, PROCOMET.

[5]  Erik P. de Vink,et al.  Axiomatizing GSOS with termination , 2002, J. Log. Algebraic Methods Program..

[6]  Gordon D. Plotkin,et al.  The origins of structural operational semantics , 2004, J. Log. Algebraic Methods Program..

[7]  Luca Aceto,et al.  Deriving Complete Inference Systems for a Class of GSOS Languages Generation Regular Behaviours , 1994, CONCUR.

[8]  Luca Aceto,et al.  Structural Operational Semantics , 1999, Handbook of Process Algebra.

[9]  David Park,et al.  Concurrency and Automata on Infinite Sequences , 1981, Theoretical Computer Science.

[10]  Jan Friso Groote,et al.  The meaning of negative premises in transition system specifications , 1991, JACM.

[11]  Rob J. van Glabbeek,et al.  The meaning of negative premises in transition system specifications II , 1996, J. Log. Algebraic Methods Program..

[12]  Chris Verhoef,et al.  A Congruence Theorem for Structured Operational Semantics with Predicates and Negative Premises , 1994, Nord. J. Comput..

[13]  Irek Ulidowski,et al.  Finite axiom systems for testing preorder and De Simone process languages , 1996, Theor. Comput. Sci..

[14]  Frits W. Vaandrager,et al.  Turning SOS rules into equations , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[15]  Gordon D. Plotkin,et al.  A structural approach to operational semantics , 2004, J. Log. Algebraic Methods Program..

[16]  Jos C. M. Baeten,et al.  A Congruence Theorem for Structured Operational Semantics with Predicates , 1993, CONCUR.