Concentration polarization in ultrafiltration and reverse osmosis: a critical review

Abstract A primary reason for flux decline during the initial period of a membrane separation process is concentration polarization of solute at the membrane surface This can occur in conjunction with irreversible fouling of the membrane as well as reversible gel layer formation Experimental and mathematical studies have been performed by various groups to gain a better understanding of concentration polarization phenomena in ultrafiltration and reverse osmosis This article critically reviews published studies on concentration polarization in both systems It presents progress made in determination of, for example, critical or limiting flux, and recommends specific models such as surface renewal, and experimental methods such as laser-based refractometry, for quantification of the problem.

[1]  S. V. Polyakov,et al.  On the calculation of reverse osmosis plants with spiral-wound membrane elements , 1996 .

[2]  C. Ross Ethier,et al.  Concentration and concentration gradient measurements in an ultrafiltration concentration polarization layer. Part I : A laser-based refractometric experimental technique , 1997 .

[3]  Lianfa Song,et al.  A new model for the calculation of the limiting flux in ultrafiltration , 1998 .

[4]  A. Cherkasov,et al.  Selective properties of ultrafiltration membranes from the standpoint of concentration polarization and adsorption phenomena , 1995 .

[5]  Lloyd P. M. Johnston,et al.  Optimal design of reverse osmosis module networks , 2000 .

[6]  K. Ahn,et al.  Application of nanofiltration for recycling of paper regeneration wastewater and characterization of filtration resistance , 1998 .

[7]  M. Dal-Cin,et al.  Membrane performance with a pulp mill effluent: Relative contributions of fouling mechanisms☆ , 1996 .

[8]  M. G. Parvatiyar Interaction of dispersed phase with concentration polarization , 1996 .

[9]  V. Gekas,et al.  Mass transfer in the membrane concentration polarization layer under turbulent cross flow : II. Application to the characterization of ultrafiltration membranes , 1988 .

[10]  John N. Veenstra,et al.  Analysis of concentration polarization phenomenon in ultrafiltration under turbulent flow conditions , 1996 .

[11]  Sanjay Kumar Gupta,et al.  Design and analysis of reverse osmosis systems using three parameter models for transport across the membrane , 1992 .

[12]  A. Jönsson Concentration polarization and fouling during ultrafiltration of colloidal suspensions and hydrophobic solutes , 1995 .

[13]  J. C. van Dijk,et al.  Only two membrane modules per pressure vessel? Hydraulic optimization of spiral-wound membrane filtration plants , 1998 .

[14]  Vassilis Gekas,et al.  Mass transfer in the membrane concentration polarization layer under turbulent cross flow , 1987 .

[15]  W. T. Hanbury,et al.  Numerical simulation and optimisation of spiral-wound modules , 1992 .

[16]  M. A. Islam,et al.  Contribution of adsorbed layer resistance to the flux-decline in an ultrafiltration process , 1998 .

[17]  Zacharias B. Maroulis,et al.  Salt and water permeability in reverse osmosis membranes , 1996 .

[18]  Anthony G. Fane,et al.  Charge effects in the cross-flow filtration of colloids and particulates , 1989 .

[19]  A. Fane,et al.  Particle deposition during membrane filtration of colloids: transition between concentration polarization and cake formation , 1997 .

[20]  J. Pope,et al.  Quantitative measurements of the concentration polarisation layer thickness in membrane filtration of oil-water emulsions using NMR micro-imaging , 1996 .

[21]  Menachem Elimelech,et al.  A novel approach for modeling concentration polarization in crossflow membrane filtration based on the equivalence of osmotic pressure model and filtration theory , 1998 .

[22]  B. Jönsson,et al.  Ultrafiltration of colloidal dispersions - A theoretical model of the concentration polarization phenomena , 1996 .

[23]  Georges Belfort,et al.  Membrane modules: comparison of different configurations using fluid mechanics☆ , 1988 .

[24]  T. Matsuura,et al.  Study on fouling of ultrafiltration membrane by electron spin resonance , 2000 .

[25]  M. G. Parvatiyar,et al.  Mass transfer in a membrane tube with turbulent flow of Newtonian and non-Newtonian fluids , 1998 .

[26]  J Schwinge,et al.  Characterization of a zigzag spacer for ultrafiltration , 2000 .

[27]  Mark M. Clark,et al.  Modeling of flux decline during crossflow ultrafiltration of colloidal suspensions , 1998 .

[28]  B. Jönsson,et al.  Colloidal fouling during ultrafiltration , 1996 .

[29]  Georges Belfort,et al.  Flux enhancement during Dean vortex microfiltration. 8. Further diagnostics1 , 1997 .

[30]  Francisco A. Riera,et al.  Permeate flux prediction in apple juice concentration by reverse osmosis , 1997 .

[31]  A. Zydney,et al.  Asymmetric solute transport and solvent flux in dual-skinned hollow fiber membranes , 1996 .

[32]  M. Clifton,et al.  Growth of the polarization layer in ultrafiltration with hollow-fibre membranes , 1984 .

[33]  Michael K. Stenstrom,et al.  An unsteady-state model to predict concentration polarization in commercial spiral wound membranes , 1999 .

[34]  W. T. Hanbury,et al.  Spiral wound modules performance an analytical solution: Part II , 1991 .

[35]  C. R. Ethier,et al.  Concentration and concentration gradient measurements in an ultrafiltration concentration polarization layer Part II: Application to hyaluronan , 1997 .

[36]  M. Bodzek,et al.  Ultrafiltration of latex wastewaters , 1996 .

[37]  Pierre J. Carreau,et al.  Modeling of ultrafiltration : predictions of concentration polarization effects , 1994 .

[38]  G. Denisov,et al.  Theory of concentration polarization in cross-flow ultrafiltration: gel-layer model and osmotic-pressure model , 1994 .

[39]  Anthony G. Fane,et al.  The dynamics of polarisation in unstirred and stirred ultrafiltration , 1984 .

[40]  Zagabathuni Venkata Panchakshari Murthy,et al.  Estimation of mass transfer coefficient using a combined nonlinear membrane transport and film theory model , 1997 .