On the convergence of Hill's method

Hill's method is a means to numerically approximate spectra of linear differential operators with periodic coefficients. In this paper, we address different issues related to the convergence of Hill's method. We show the method does not produce any spurious approximations, and that for selfadjoint operators, the method converges in a restricted sense. Furthermore, assuming convergence of an eigenvalue, we prove convergence of the associated eigenfunction approximation in the L 2 -norm. These results are not restricted to selfadjoint operators. Finally, for certain selfadjoint operators, we prove that the rate of convergence of Hill's method to the least eigenvalue is faster than any polynomial power.

[1]  John Locker Functional analysis and two-point differential operators , 1986 .

[2]  I. Gohberg,et al.  Classes of Linear Operators , 1990 .

[3]  G. Hill On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon , 1886 .

[4]  L. M. Delves,et al.  Analysis of Global Expansion Methods: Weakly Asymptotically Diagonal Systems , 1981 .

[5]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[6]  Henri Poincaré,et al.  Sur les déterminants d'ordre infini , 1886 .

[7]  Israel Gohberg,et al.  Traces and determinants of linear operators , 1996 .

[8]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[9]  M. A. Kaashoek,et al.  Classes of Linear Operators Vol. I , 1990 .

[10]  Jun Zhou,et al.  Zeros and Poles of Linear Continuous-Time Periodic Systems: Definitions and Properties , 2008, IEEE Transactions on Automatic Control.

[11]  M. A. Krasnoselʹskii,et al.  Approximate Solution of Operator Equations , 1972 .

[12]  D. Whittaker,et al.  A Course in Functional Analysis , 1991, The Mathematical Gazette.

[13]  Jun Zhou,et al.  Spectral characteristics and eigenvalues computation of the harmonic state operators in continuous-time periodic systems , 2004, Syst. Control. Lett..

[14]  A. Böttcher Infinite matrices and projection methods , 1995 .

[15]  Henrik Sandberg,et al.  Frequency-domain analysis of linear time-periodic systems , 2005, IEEE Transactions on Automatic Control.

[16]  Guanrong Chen,et al.  Approximate Solutions of Operator Equations , 1997 .

[17]  Joshua W. Lytle,et al.  Stability for Traveling Waves , 2011 .

[18]  Arch W. Naylor,et al.  Linear Operator Theory in Engineering and Science , 1971 .

[19]  Bernd Silbermann,et al.  Analysis of Toeplitz Operators , 1991 .

[20]  Israel Michael Sigal,et al.  Introduction to Spectral Theory , 1996 .

[21]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[22]  Bernard Deconinck,et al.  Computing spectra of linear operators using the Floquet-Fourier-Hill method , 2006, J. Comput. Phys..

[23]  J. Craggs Applied Mathematical Sciences , 1973 .

[24]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[25]  B. Sandstede,et al.  Chapter 18 - Stability of Travelling Waves , 2002 .

[26]  Tosio Kato Perturbation theory for linear operators , 1966 .

[27]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[28]  K. Atkinson,et al.  Theoretical Numerical Analysis: A Functional Analysis Framework , 2001 .

[29]  Israel Michael Sigal,et al.  Introduction to Spectral Theory: With Applications to Schrödinger Operators , 1995 .