Generic Proof Tools and Finite Group Theory
暂无分享,去创建一个
[1] Jaakko Järvi,et al. An extended comparative study of language support for generic programming , 2007, Journal of Functional Programming.
[2] John D. Dixon,et al. Problems in Group Theory , 1973 .
[3] Gilles Barthe,et al. Setoids in type theory , 2003, Journal of Functional Programming.
[4] Lars Birkedal,et al. Design patterns in separation logic , 2009, TLDI '09.
[5] Venanzio Capretta,et al. A polymorphic representation of induction-recursion , 2004 .
[6] David Hemmendinger. Operator overloading , 2003 .
[7] Michael J. Vilot,et al. Standard template library , 1996 .
[8] Claudio Sacerdoti Coen,et al. Working with Mathematical Structures in Type Theory , 2007, TYPES.
[9] Christopher Strachey,et al. Fundamental Concepts in Programming Languages , 2000, High. Order Symb. Comput..
[10] Christine Paulin-Mohring,et al. Inductive Definitions in the system Coq - Rules and Properties , 1993, TLCA.
[11] R. Arthan,et al. Some Mathematical Case Studies in ProofPower - , 2008 .
[12] E. Gunter. Doing Algebra in Simple Type Theory , 1989 .
[13] Mark P. Jones. Computing with Lattices: An Application of Type Classes , 1992, J. Funct. Program..
[14] George W. Polites,et al. An introduction to the theory of groups , 1968 .
[15] M. Lyon. An Interview With... , 2004, Nature Reviews Genetics.
[16] Markus Wenzel,et al. Constructive Type Classes in Isabelle , 2006, TYPES.
[17] Per Martin-Löf,et al. An intuitionistic theory of types , 1972 .
[18] Paul Callaghan. Coherence Checking of Coercions in Plastic , 2000 .
[19] Gérard P. Huet,et al. Higher Order Unification 30 Years Later , 2002, TPHOLs.
[20] Yoshinori Fujisawa. Euler ’ s Theorem and Small Fermat ’ s Theorem , 1998 .
[21] Paul B. Jackson. Exploring Abstract Algebra in Constructive Type Theory , 1994, CADE.
[22] Conor McBride,et al. Proving Properties about Lists Using Containers , 2008, FLOPS.
[23] Arthur Charguéraud,et al. Engineering formal metatheory , 2008, POPL '08.
[24] Wolfram Kahl,et al. Named Instances for Haskell Type Classes , 2001 .
[25] Thierry Coquand,et al. An Analysis of Girard's Paradox , 1986, LICS.
[26] H. O. Foulkes. Abstract Algebra , 1967, Nature.
[27] Gilles Barthe,et al. Implicit Coercions in Type Systems , 1995, TYPES.
[28] Richard Statman,et al. Lambda Calculus with Types , 2013, Perspectives in logic.
[29] Matthew H. Austern. Generic programming and the STL - using and extending the C++ standard template library , 1999, Addison-Wesley professional computing series.
[30] Thorsten Altenkirch,et al. Foundations of Software Science and Computation Structures: 6th International Conference, FOSSACS 2003 Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2003 Warsaw, Poland, April 7–11, 2003 Proceedings , 2003, Lecture Notes in Computer Science.
[31] S Maclane,et al. Natural Isomorphisms in Group Theory. , 1942, Proceedings of the National Academy of Sciences of the United States of America.
[32] Derek Dreyer,et al. How to make ad hoc proof automation less ad hoc , 2011, ICFP '11.
[33] Sidi Ould Biha. Composants mathématiques pour la théorie des groupes , 2010 .
[34] Martín Abadi,et al. A Logic for Parametric Polymorphism , 1993, TLCA.
[35] Yves Bertot,et al. Interactive Theorem Proving and Program Development: Coq'Art The Calculus of Inductive Constructions , 2010 .
[36] Georges Gonthier. Point-Free, Set-Free Concrete Linear Algebra , 2011, ITP.
[37] Zhaohui Luo,et al. Coercive Subtyping , 1995 .
[38] Matthieu Sozeau. A New Look at Generalized Rewriting in Type Theory , 2009, J. Formaliz. Reason..
[39] Joseph E. Stoy. Proceedings of the fourth international conference on Functional programming languages and computer architecture , 1989 .
[40] Thomas Santen. Isomorphisms - A Link Between the Shallow and the Deep , 1999, TPHOLs.
[41] Anthony Bailey,et al. Coercion Synthesis in Computer Implementations of Type-Theoretic Frameworks , 1996, TYPES.
[42] S. A. Amitsur. A General Theory of Radicals. I. Radicals in Complete Lattices , 1952 .
[43] de Ng Dick Bruijn,et al. Telescopic Mappings in Typed Lambda Calculus , 1991, Inf. Comput..
[44] Joe B. Wells,et al. Typability and Type Checking in System F are Equivalent and Undecidable , 1999, Ann. Pure Appl. Log..
[45] Randy Shepherd,et al. Object-Oriented Programming , 1994, Lecture Notes in Computer Science.
[46] Pierre Letouzey,et al. Programmation fonctionnelle certifiée : L'extraction de programmes dans l'assistant Coq. (Certified functional programming : Program extraction within Coq proof assistant) , 2004 .
[47] Ralf Lämmel,et al. JavaGI : Generalized Interfaces for Java , 2007, ECOOP.
[48] Thierry Coquand,et al. An Algorithm for Type-Checking Dependent Types , 1996, Sci. Comput. Program..
[49] Gérard P. Huet,et al. Constructive category theory , 2000, Proof, Language, and Interaction.
[50] Enrico Tassi,et al. A Modular Formalisation of Finite Group Theory , 2007, TPHOLs.
[51] David Joyner,et al. Applied Abstract Algebra , 2004 .
[52] Martin Odersky,et al. Type classes as objects and implicits , 2010, OOPSLA.
[53] Zhaohui Luo,et al. Computation and reasoning - a type theory for computer science , 1994, International series of monographs on computer science.
[54] Simon Peyton Jones,et al. Type classes: an exploration of the design space , 1997 .
[55] B. Gardner. KUROSH-AMITSUR RADICAL THEORY FOR GROUPS , 2010 .
[56] Alan Bundy,et al. Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.
[57] Andrée Bastiani,et al. Théorie des ensembles , 1970 .
[58] Giandomenic Sica,et al. What is category theory , 2006 .
[59] Frank Pfenning,et al. Unification and anti-unification in the calculus of constructions , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.
[60] Alexander Katovsky,et al. Category Theory , 2010, Arch. Formal Proofs.
[61] John C. Mitchell,et al. Abstract types have existential type , 1988, TOPL.
[62] Benjamin Werner,et al. Une Théorie des Constructions Inductives , 1994 .
[63] S. Maclane,et al. General theory of natural equivalences , 1945 .
[64] Conal Elliott. Extensions and applications of higher-order unification , 1990 .
[65] Ralf Hinze,et al. Fun with phantom types , 2003 .
[66] Martín Abadi,et al. Formal parametric polymorphism , 1993, POPL '93.
[67] Philip Wadler,et al. How to make ad-hoc polymorphism less ad hoc , 1989, POPL '89.
[68] Herman Geuvers,et al. A Constructive Algebraic Hierarchy in Coq , 2002, J. Symb. Comput..
[69] T. Peterfalvi. Character theory for the odd order theorem , 2000 .
[70] Enrico Tassi,et al. Interactive theorem provers: issues faced as a user and tackled as a developer , 2008 .
[71] David J. Pym,et al. Proofs, search and computation in general logic , 1990 .
[72] James Cheney,et al. First-Class Phantom Types , 2003 .
[73] Ioana Pasca,et al. Canonical Big Operators , 2008, TPHOLs.
[74] Benjamin Werner,et al. Simple Types in Type Theory: Deep and Shallow Encodings , 2007, TPHOLs.
[75] R. Wiegandt,et al. The General Theory of Radicals , 2003 .
[76] Rasmus Ejlers Møgelberg,et al. On the Definition of Parametricity , 2004 .
[77] Christine Paulin-Mohring,et al. The coq proof assistant reference manual , 2000 .
[78] Bas Spitters,et al. Type classes for mathematics in type theory† , 2011, Mathematical Structures in Computer Science.
[79] Alexander A. Stepanov,et al. C++ Standard Template Library , 2000 .
[80] Piotr Rudnicki,et al. Commutative Algebra in the Mizar System , 2001, J. Symb. Comput..
[81] Edsko de Vries,et al. Polytypic programming in COQ , 2008, WGP '08.
[82] Gang Chen. Coercive subtyping for the calculus of constructions , 2003, POPL '03.
[83] Benjamin Grégoire,et al. Proving Equalities in a Commutative Ring Done Right in Coq , 2005, TPHOLs.
[84] Ralf Lämmel,et al. Software extension and integration with type classes , 2006, GPCE '06.
[85] Manuel M. T. Chakravarty,et al. ML Modules and Haskell Type Classes: A Constructive Comparison , 2008, APLAS.
[86] Amokrane Saibi. Outils Génériques de Modélisation et de Démonstration pour la Formalisation des Mathématiques en Théorie des Types. Application à la Théorie des Catégories. , 1999 .
[87] Yehoshua Bar-Hillel,et al. Foundations of Set Theory , 2012 .
[88] P. Dybjer. Inductive sets and families in Martin-Lo¨f's type theory and their set-theoretic semantics , 1991 .
[89] Georges Gonthier. A computer-checked proof of the Four Colour Theorem , 2005 .
[90] Andrea Asperti,et al. Hints in Unification , 2009, TPHOLs.
[91] Zhaohui Luo,et al. Implementation Techniques for Inductive Types in Plastic , 1999, TYPES.
[92] Mark P. Jones. A system of constructor classes: overloading and implicit higher-order polymorphism , 1993, FPCA '93.
[93] Dale Miller,et al. A Logic Programming Language with Lambda-Abstraction, Function Variables, and Simple Unification , 1991, J. Log. Comput..
[94] John Stillwell,et al. Elements of Algebra , 1994 .
[95] Wouter Swierstra,et al. Data types à la carte , 2008, Journal of Functional Programming.
[96] Robert Pollack. Dependently Typed Records in Type Theory , 2002, Formal Aspects of Computing.
[97] Alan J. Perlis,et al. Special Feature: Epigrams on programming , 1982, SIGP.
[98] Patrik Jansson,et al. Parametricity and dependent types , 2010, ICFP '10.
[99] Robert Bruce Findler,et al. Modular object-oriented programming with units and mixins , 1998, ICFP '98.
[100] H. Kurzweil,et al. The theory of finite groups : an introduction , 2004 .
[101] Federico Biancuzzi,et al. Masterminds of Programming - Conversations with the Creators of Major Programming Languages , 2009 .
[102] S. A. Amitsur. A General Theory of Radicals. II. Radicals in Rings and Bicategories , 1954 .
[103] C. A. R. Hoare,et al. The emperor's old clothes , 1981, CACM.
[104] Eduardo Giménez,et al. Codifying Guarded Definitions with Recursive Schemes , 1994, TYPES.
[105] Vincent Siles. Investigation on the typing of equality in type systems. (Etude sur le typage de l'égalité dans les systèmes de types) , 2010 .
[106] .. I,et al. OPERATORS AND ALGEBRAIC STRUCTURES , 1981 .
[107] Bjarne Stroustrup,et al. Concepts: linguistic support for generic programming in C++ , 2006, OOPSLA '06.
[108] S. E. Dickson. A torsion theory for Abelian categories , 1966 .
[109] Thorsten Altenkirch,et al. Constructions, inductive types and strong normalization , 1993, CST.
[110] Claudio Sacerdoti Coen. A Semi-reflexive Tactic for (Sub-)Equational Reasoning , 2004, TYPES.
[111] Bruno C. d. S. Oliveira,et al. Modular Visitor Components , 2009, ECOOP.
[112] Matthieu Sozeau,et al. First-Class Type Classes , 2008, TPHOLs.
[113] Elie Soubiran. Développement modulaire de théories et gestion de l'espace de nom pour l'assistant de preuve Coq. (Modular development of theories and name-space management for the Coq proof assistant) , 2010 .
[114] Benjamin Grégoire,et al. On the Role of Type Decorations in the Calculus of Inductive Constructions , 2005, CSL.
[115] Martin Odersky,et al. Independently Extensible Solutions to the Expression Problem , 2004 .
[116] Assia Mahboubi,et al. An introduction to small scale reflection in Coq , 2010, J. Formaliz. Reason..
[117] K. Appel,et al. The Solution of the Four-Color-Map Problem , 1977 .
[118] Amokrane Saïbi. Typing algorithm in type theory with inheritance , 1997, POPL '97.
[119] Erwin Schrödinger International,et al. Supported by the Austrian Federal Ministry of Education, Science and Culture , 1689 .
[120] Riccardo Pucella,et al. Phantom types and subtyping , 2002, Journal of Functional Programming.
[121] Judicaël Courant,et al. Explicit Universes for the Calculus of Constructions , 2002, TPHOLs.
[122] 竹内 泉. The Theory of Parametricity in Lambda Cube (Towards new interaction between category theory and proof theory) , 2001 .
[123] G. Glauberman,et al. Local Analysis for the Odd Order Theorem: Maximal Subgroups , 1995 .
[124] Stan Jarzabek,et al. Proceedings of the 5th international conference on Generative programming and component engineering , 2006 .
[125] Gérard P. Huet,et al. The Constructive Engine , 1989, A Perspective in Theoretical Computer Science.
[126] Georges Gonthier,et al. Formal Proof—The Four- Color Theorem , 2008 .
[127] Stephanie Weirich,et al. Under Consideration for Publication in J. Functional Programming Parametricity, Type Equality and Higher-order Polymorphism , 2022 .
[128] Gérard P. Huet,et al. A Unification Algorithm for Typed lambda-Calculus , 1975, Theor. Comput. Sci..
[129] Georges Gonthier,et al. An Ssreflect Tutorial , 2009 .
[130] Kevin Knight,et al. Unification: a multidisciplinary survey , 1989, CSUR.
[131] Patricia Johann,et al. Free theorems in the presence of seq , 2004, POPL.
[132] Herman Geuvers,et al. C-CoRN, the Constructive Coq Repository at Nijmegen , 2004, MKM.
[133] Rod M. Burstall,et al. Programming with Modules as Typed Functional Programming , 1984, FGCS.
[134] Conor McBride. Faking it: Simulating dependent types in Haskell , 2002, J. Funct. Program..
[135] Daniel Seidel,et al. Automatically Generating Counterexamples to Naive Free Theorems , 2010, FLOPS.
[136] Wayne Snyder,et al. Higher-Order Unification Revisited: Complete Sets of Transformations , 1989, J. Symb. Comput..
[137] Saunders MacLane,et al. Duality for groups , 1950 .
[138] Matthieu Sozeau,et al. Un environnement pour la programmation avec types dépendants. (An environment for programming with dependent types) , 2008 .
[139] Konrad Slind,et al. Treating Partiality in a Logic of Total Functions , 1997, Comput. J..
[140] Martin Raussen,et al. Interview with Jean-Pierre Serre , 2003 .
[141] Gyesik Lee,et al. Proof-irrelevant model of CC with predicative induction and judgmental equality , 2011, Log. Methods Comput. Sci..
[142] Xavier Leroy,et al. Formal verification of a realistic compiler , 2009, CACM.
[143] Paul B. Jackson. Enhancing the NUPRL Proof Development System and Applying it to Computational Abstract Algebra , 1995 .
[144] Ralf Lämmel,et al. Haskell's overlooked object system , 2005, ArXiv.
[145] Gilles Dowek,et al. A Complete Proof Synthesis Method for the Cube of Type Systems , 1993, J. Log. Comput..
[146] William R. Cook,et al. On understanding data abstraction, revisited , 2009, OOPSLA '09.
[147] Riccardo Pucella,et al. Practical Datatype Specializations with Phantom Types and Recursion Schemes , 2006, Electron. Notes Theor. Comput. Sci..
[148] Gilles Dowek,et al. Higher-Order Unification and Matching , 2001, Handbook of Automated Reasoning.
[149] Douglas J. Howe,et al. Impredicative Strong Existential Equivalent to Type:Type , 1986 .
[150] U. Norell,et al. Towards a practical programming language based on dependent type theory , 2007 .
[151] Assia Mahboubi,et al. Packaging Mathematical Structures , 2009, TPHOLs.
[152] Daan Leijen,et al. Domain specific embedded compilers , 1999, DSL '99.
[153] Cristina Cornes,et al. Conception d'un langage de haut niveau de representation de preuves : recurrence par filtrage de motifs unification en presence de types inductifs primitifs synthese de lemmes d'inversion , 1997 .
[154] Martin Odersky,et al. Fighting bit Rot with Types (Experience Report: Scala Collections) , 2009, FSTTCS.
[155] Enrico Tassi,et al. A Small Scale Reflection Extension for the Coq system , 2008 .
[156] A. Nogin,et al. Formalizing Abstract Algebra in Type Theory with Dependent Records , 2003 .
[157] F. Pearl,et al. Free Theorems Involving Type Constructor Classes , 2008 .
[158] C. Paulin-Mohring. Définitions Inductives en Théorie des Types , 1996 .
[159] Peyton Jones,et al. Haskell 98 language and libraries : the revised report , 2003 .
[160] Manuel M. T. Chakravarty,et al. Modular type classes , 2007, POPL '07.
[161] Simon L. Peyton Jones,et al. Associated types with class , 2005, POPL '05.
[162] Hugo Herbelin. Type inference with algebraic universes in the Calculus of Inductive Constructions , 2005 .
[163] Conor McBride,et al. Inductive Families Need Not Store Their Indices , 2003, TYPES.
[164] Álvaro Tasistro,et al. Extension of Martin-Lf's Type Theory with Record Types and Subtyping , 1998 .
[165] Shin-Cheng Mu,et al. Algebra of Programming Using Dependent Types , 2008, MPC.
[166] Gift Siromoney,et al. A Perspective in Theoretical Computer Science - Commemorative Volume for Gift Siromoney , 1989, A Perspective in Theoretical Computer Science.
[167] Philip Wadler,et al. Theorems for free! , 1989, FPCA.
[168] Herman Geuvers,et al. Induction Is Not Derivable in Second Order Dependent Type Theory , 2001, TLCA.
[169] Zhaohui Luo,et al. Coercive Subtyping in Type Theory , 1996, CSL.
[170] R. Arthan. Mathematical Case Studies: — Some Group Theory , 2012 .
[171] E. Puczyłowski. On general theory of radicals , 1993 .
[172] Jeremy Yallop,et al. Practical generic programming in OCaml , 2007, ML '07.
[173] Francis J. Mueller. Elements of Algebra , 1969 .
[174] John C. Reynolds,et al. Types, Abstraction and Parametric Polymorphism , 1983, IFIP Congress.
[175] Hugo Herbelin,et al. The Coq proof assistant : reference manual, version 6.1 , 1997 .
[176] David B. MacQueen. Modules for standard ML , 1984, LFP '84.
[177] Mark P. Jones,et al. Type Classes with Functional Dependencies , 2000, ESOP.
[178] Robert Pollack,et al. Dependently Typed Records for Representing Mathematical Structure , 2000, TPHOLs.
[179] E. Bishop. Foundations of Constructive Analysis , 2012 .
[180] Philip Wadler,et al. The Girard-Reynolds isomorphism (second edition) , 2007, Theor. Comput. Sci..
[181] W. Feit,et al. SOLVABILITY OF GROUPS OF ODD ORDER , 2012 .
[182] Adi Shamir,et al. A method for obtaining digital signatures and public-key cryptosystems , 1978, CACM.