A nonlinear viscoelastic model of lung tissue mechanics.
暂无分享,去创建一个
There have been a number of attempts recently to use linear models to describe the low-frequency (0-2 Hz) dependence of lung tissue resistance (Rti) and elastance (Eti). Only a few attempts, however, have been made to account for the volume dependence of these quantities, all of which require the tissues to be plastoelastic. In this paper we specifically avoid invoking plastoelasticity and develop a nonlinear viscoelastic model that is also capable of accounting for the nonlinear and frequency-dependent features of lung tissue mechanics. The model parameters were identified by fitting the model to data obtained in a previous study from dogs during sinusoidal ventilation. The model was then used to simulate pressure and flow data by use of various types of ventilation patterns similar to those that have been employed experimentally. Rti and Eti were estimated from the simulated data by use of four different estimation techniques commonly applied in respiratory mechanics studies. We found that the estimated volume dependence of Rti and Eti is sensitive to both the ventilation pattern and the estimation technique, being in error by as much as 217 and 22%, respectively.