SN 2020bvc: A Broad-line Type Ic Supernova with a Double-peaked Optical Light Curve and a Luminous X-Ray and Radio Counterpart

We present optical, radio, and X-ray observations of SN 2020bvc (=ASASSN-20bs, ZTF 20aalxlis), a nearby ( z=0.0252; d = 114 Mpc) broad-line (BL) Type Ic supernova (SN) and the first double-peaked Ic-BL discovered without a gamma-ray burst (GRB) trigger. Our observations show that SN 2020bvc shares several properties in common with the Ic-BL SN 2006aj, which was associated with the low-luminosity gamma-ray burst (LLGRB) 060218. First, the 10 GHz radio luminosity ( Lradio≈1037ergs−1 ) is brighter than ordinary core-collapse SNe but fainter than LLGRB SNe such as SN 1998bw (associated with LLGRB 980425). We model our VLA observations (spanning 13–43 days) as synchrotron emission from a mildly relativistic (v ≳ 0.3c) forward shock. Second, with Swift and Chandra, we detect X-ray emission (L X ≈ 1041 erg s−1 ) that is not naturally explained as inverse Compton emission or part of the same synchrotron spectrum as the radio emission. Third, high-cadence (6× night–1) data from the Zwicky Transient Facility (ZTF) show a double-peaked optical light curve, the first peak from shock cooling of extended low-mass material (mass Me<10−2M⊙ at radius R e > 1012 cm) and the second peak from the radioactive decay of 56Ni . SN 2020bvc is the first double-peaked Ic-BL SN discovered without a GRB trigger, so it is noteworthy that it shows X-ray and radio emission similar to LLGRB SNe. For four of the five other nearby (z ≲ 0.05) Ic-BL SNe with ZTF high-cadence data, we rule out a first peak like that seen in SN 2006aj and SN 2020bvc, i.e., that lasts ≈1 day and reaches a peak luminosity M ≈ −18. Follow-up X-ray and radio observations of Ic-BL SNe with well-sampled early optical light curves will establish whether double-peaked optical light curves are indeed predictive of LLGRB-like X-ray and radio emission.

[1]  Adam A. Miller,et al.  The Zwicky Transient Facility Census of the Local Universe. I. Systematic Search for Calcium-rich Gap Transients Reveals Three Related Spectroscopic Subclasses , 2020, The Astrophysical Journal.

[2]  J. Hjorth,et al.  Broad-line type Ic SN 2020bvc , 2020, Astronomy & Astrophysics.

[3]  Adam A. Miller,et al.  The Broad-lined Ic Supernova ZTF18aaqjovh (SN 2018bvw): An Optically Discovered Engine-driven Supernova Candidate with Luminous Radio Emission , 2019, The Astrophysical Journal.

[4]  D. Perley,et al.  Core-collapse, superluminous, and gamma-ray burst supernova host galaxy populations at low redshift: the importance of dwarf and starbursting galaxies , 2019, Monthly Notices of the Royal Astronomical Society.

[5]  A. Mahabal,et al.  The Zwicky Transient Facility Bright Transient Survey. I. Spectroscopic Classification and the Redshift Completeness of Local Galaxy Catalogs , 2019, The Astrophysical Journal.

[6]  Adam A. Miller,et al.  ZTF Early Observations of Type Ia Supernovae. I. Properties of the 2018 Sample , 2019, The Astrophysical Journal.

[7]  Umaa Rebbapragada,et al.  Real-bogus classification for the Zwicky Transient Facility using deep learning , 2019, Monthly Notices of the Royal Astronomical Society.

[8]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[9]  Richard Walters,et al.  The Zwicky Transient Facility: Surveys and Scheduler , 2019, Publications of the Astronomical Society of the Pacific.

[10]  M. Graham,et al.  Evidence for Late-stage Eruptive Mass Loss in the Progenitor to SN2018gep, a Broad-lined Ic Supernova: Pre-explosion Emission and a Rapidly Rising Luminous Transient , 2019, The Astrophysical Journal.

[11]  D. Perley Fully Automated Reduction of Longslit Spectroscopy with the Low Resolution Imaging Spectrometer at the Keck Observatory , 2019, Publications of the Astronomical Society of the Pacific.

[12]  C. Fremling,et al.  Fully automated integral field spectrograph pipeline for the SEDMachine: pysedm , 2019, Astronomy & Astrophysics.

[13]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Science Objectives , 2019, Publications of the Astronomical Society of the Pacific.

[14]  R. Itoh,et al.  The GROWTH Marshal: A Dynamic Science Portal for Time-domain Astronomy , 2019, Publications of the Astronomical Society of the Pacific.

[15]  Umaa Rebbapragada,et al.  Machine Learning for the Zwicky Transient Facility , 2019, Publications of the Astronomical Society of the Pacific.

[16]  D. Perley,et al.  Host Galaxies of Type Ic and Broad-lined Type Ic Supernovae from the Palomar Transient Factory: Implications for Jet Production , 2019, The Astrophysical Journal.

[17]  D. A. Kann,et al.  Signatures of a jet cocoon in early spectra of a supernova associated with a γ-ray burst , 2019, Nature.

[18]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: System Overview, Performance, and First Results , 2018, Publications of the Astronomical Society of the Pacific.

[19]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Data Processing, Products, and Archive , 2018, Publications of the Astronomical Society of the Pacific.

[20]  J. Sollerman,et al.  Type Ic supernovae from the (intermediate) Palomar Transient Factory , 2018, Astronomy & Astrophysics.

[21]  A. Miller,et al.  A Morphological Classification Model to Identify Unresolved PanSTARRS1 Sources: Application in the ZTF Real-time Pipeline , 2018, Publications of the Astronomical Society of the Pacific.

[22]  E. Phinney,et al.  AT2018cow: A Luminous Millimeter Transient , 2018, The Astrophysical Journal.

[23]  E. Ofek,et al.  A hot and fast ultra-stripped supernova that likely formed a compact neutron star binary , 2018, Science.

[24]  Jianjin Deng,et al.  Spectroscopy of the Type Ic Supernova SN 2017iuk Associated with Low-redshift GRB 171205A , 2018, The Astrophysical Journal.

[25]  P. Brown,et al.  GRB 171205A/SN 2017iuk: A local low-luminosity gamma-ray burst , 2018, Astronomy & Astrophysics.

[26]  Columbia,et al.  Discovery of the Luminous, Decades-long, Extragalactic Radio Transient FIRST J141918.9+394036 , 2018, The Astrophysical Journal.

[27]  Adam D. Myers,et al.  Overview of the DESI Legacy Imaging Surveys , 2018, The Astronomical Journal.

[28]  Adrian M. Price-Whelan,et al.  Binary Companions of Evolved Stars in APOGEE DR14: Search Method and Catalog of ∼5000 Companions , 2018, The Astronomical Journal.

[29]  E. Ramirez-Ruiz,et al.  Off-axis afterglow light curves and images from 2D hydrodynamic simulations of double-sided GRB jets in a stratified external medium , 2018, Monthly Notices of the Royal Astronomical Society.

[30]  D. Perley,et al.  A surge of light at the birth of a supernova , 2018, Nature.

[31]  B. Stalder,et al.  ATLAS: A High-cadence All-sky Survey System , 2018, 1802.00879.

[32]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[33]  Richard Walters,et al.  The SED Machine: A Robotic Spectrograph for Fast Transient Classification , 2017, 1710.02917.

[34]  F. Bianco,et al.  A GRB and Broad-lined Type Ic Supernova from a Single Central Engine , 2017, The Astrophysical Journal.

[35]  P. Vreeswijk,et al.  iPTF 16asu: A Luminous, Rapidly Evolving, and High-velocity Supernova , 2017, 1706.05018.

[36]  D. Frail,et al.  iPTF17cw: An Engine-driven Supernova Candidate Discovered Independent of a Gamma-Ray Trigger , 2017, 1706.00045.

[37]  J. Granot,et al.  A common central engine for long gamma-ray bursts and Type Ib/c supernovae , 2017, 1705.00281.

[38]  D. Ellison,et al.  Towards Understanding the Physics of Collisionless Relativistic Shocks , 2017, 1705.05549.

[39]  W. M. Wood-Vasey,et al.  The Pan-STARRS1 Surveys , 2016, 1612.05560.

[40]  R. J. Wainscoat,et al.  The Pan-STARRS1 Database and Data Products , 2016, The Astrophysical Journal Supplement Series.

[41]  A. Gal-yam Observational and Physical Classification of Supernovae , 2016, 1611.09353.

[42]  B. Winkel,et al.  HI4PI: a full-sky H i survey based on EBHIS and GASS , 2016, 1610.06175.

[43]  E. Waxman,et al.  UV/Optical Emission from the Expanding Envelopes of Type II Supernovae , 2016, 1607.03700.

[44]  J. Graham,et al.  Probing dust-obscured star formation in the most massive Gamma-Ray Burst host galaxies , 2016, 1606.08285.

[45]  P. E. Nugent,et al.  PTF12os and iPTF13bvn. Two stripped-envelope supernovae from low-mass progenitors in NGC 5806 , 2016, 1606.03074.

[46]  P. Vreeswijk,et al.  iPTF15dtg: a double-peaked Type Ic Supernova from a massive progenitor , 2016, 1605.02491.

[47]  Z. Cano,et al.  The Observer's Guide to the Gamma-Ray Burst-Supernova Connection , 2016, 1604.03549.

[48]  Eric Burns,et al.  THE THIRD FERMI GBM GAMMA-RAY BURST CATALOG: THE FIRST SIX YEARS , 2016, 1603.07612.

[49]  Eric C. Bellm,et al.  pyraf-dbsp: Reduction pipeline for the Palomar Double Beam Spectrograph , 2016 .

[50]  E. Ofek,et al.  PROPER IMAGE SUBTRACTION—OPTIMAL TRANSIENT DETECTION, PHOTOMETRY, AND HYPOTHESIS TESTING , 2016, 1601.02655.

[51]  D. Frail,et al.  RADIO OBSERVATIONS OF A SAMPLE OF BROAD-LINE TYPE IC SUPERNOVAE DISCOVERED BY PTF/IPTF: A SEARCH FOR RELATIVISTIC EXPLOSIONS , 2015, 1512.01303.

[52]  R. Chevalier,et al.  Jet or Shock Breakout? The Low-Luminosity GRB 060218 , 2015, 1511.00336.

[53]  O. Graur,et al.  THE SPECTRAL SN-GRB CONNECTION: SYSTEMATIC SPECTRAL COMPARISONS BETWEEN TYPE Ic SUPERNOVAE AND BROAD-LINED TYPE Ic SUPERNOVAE WITH AND WITHOUT GAMMA-RAY BURSTS , 2015, 1509.07124.

[54]  H. Rix,et al.  STELLAR MASSES AND STAR FORMATION RATES FOR 1 M GALAXIES FROM SDSS+WISE , 2015, 1506.00648.

[55]  A. Piro USING DOUBLE-PEAKED SUPERNOVA LIGHT CURVES TO STUDY EXTENDED MATERIAL , 2015, 1505.07103.

[56]  E. Nakar A UNIFIED PICTURE FOR LOW-LUMINOSITY AND LONG GAMMA-RAY BURSTS BASED ON THE EXTENDED PROGENITOR OF llGRB 060218/SN 2006AJ , 2015, 1503.00441.

[57]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[58]  N. Gehrels,et al.  DUST IN THE WIND: THE ROLE OF RECENT MASS LOSS IN LONG GAMMA-RAY BURSTS , 2014, 1410.7387.

[59]  Iain A. Steele,et al.  SPRAT: Spectrograph for the Rapid Acquisition of Transients , 2014, Astronomical Telescopes and Instrumentation.

[60]  P. Brown,et al.  SOUSA: the Swift Optical/Ultraviolet Supernova Archive , 2014, 1407.3808.

[61]  Christopher Bebek,et al.  The Zwicky Transient Facility: Observing System , 2014, Astronomical Telescopes and Instrumentation.

[62]  David Bersier,et al.  Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae , 2014, 1406.3667.

[63]  Carnegie,et al.  A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind , 2014, Nature.

[64]  W. M. Wood-Vasey,et al.  MULTI-COLOR OPTICAL AND NEAR-INFRARED LIGHT CURVES OF 64 STRIPPED-ENVELOPE CORE–COLLAPSE SUPERNOVAE , 2014, 1405.1428.

[65]  C. Guidorzi,et al.  RELATIVISTIC SUPERNOVAE HAVE SHORTER-LIVED CENTRAL ENGINES OR MORE EXTENDED PROGENITORS: THE CASE OF SN 2012ap , 2014, 1402.6344.

[66]  N. Smith Mass Loss: Its Effect on the Evolution and Fate of High-Mass Stars , 2014, 1402.1237.

[67]  E. Nakar,et al.  SUPERNOVAE WITH TWO PEAKS IN THE OPTICAL LIGHT CURVE AND THE SIGNATURE OF PROGENITORS WITH LOW-MASS EXTENDED ENVELOPES , 2014, 1401.7013.

[68]  Roland Diehl,et al.  THE FERMI GBM GAMMA-RAY BURST SPECTRAL CATALOG: FOUR YEARS OF DATA , 2014, 1401.5069.

[69]  A. J. van der Horst,et al.  THE SECOND FERMI GBM GAMMA-RAY BURST CATALOG: THE FIRST FOUR YEARS , 2014, 1401.5080.

[70]  J. Prieto,et al.  THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.

[71]  A. Lien,et al.  PROBING THE COSMIC GAMMA-RAY BURST RATE WITH TRIGGER SIMULATIONS OF THE SWIFT BURST ALERT TELESCOPE , 2013, 1308.3720.

[72]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[73]  D. A. Kann,et al.  THE AFTERGLOW OF GRB 130427A FROM 1 TO 1016 GHz , 2013, 1307.4401.

[74]  Z. Cano A new method for estimating the bolometric properties of Ibc supernovae , 2013, 1306.1488.

[75]  D. Dragomir,et al.  Las Cumbres Observatory Global Telescope Network , 2013, 1305.2437.

[76]  Jens Hjorth,et al.  The supernova–gamma-ray burst–jet connection , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[77]  David Polishook,et al.  DISCOVERY OF A COSMOLOGICAL, RELATIVISTIC OUTBURST VIA ITS RAPIDLY FADING OPTICAL EMISSION , 2013, 1304.4236.

[78]  S. Zwart,et al.  Are Superluminous Supernovae and Long GRBs the Products of Dynamical Processes in Young Dense Star Clusters , 2013, 1303.6961.

[79]  R. Kotak,et al.  THE TYPE IIb SUPERNOVA 2011dh FROM A SUPERGIANT PROGENITOR , 2012, 1207.5975.

[80]  R. Chevalier COMMON ENVELOPE EVOLUTION LEADING TO SUPERNOVAE WITH DENSE INTERACTION , 2012, 1204.3300.

[81]  A. Gal-yam,et al.  WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.

[82]  E. Quataert,et al.  Wave‐driven mass loss in the last year of stellar evolution: setting the stage for the most luminous core‐collapse supernovae , 2012, 1202.5036.

[83]  I. A. Steele,et al.  A fully automated data reduction pipeline for the FRODOSpec integral field spectrograph , 2011, 1112.2574.

[84]  P. Jakobsson,et al.  THE HIGHLY ENERGETIC EXPANSION OF SN 2010bh ASSOCIATED WITH GRB 100316D , 2011, 1111.4527.

[85]  R. Kirshner,et al.  CORE-COLLAPSE SUPERNOVAE AND HOST GALAXY STELLAR POPULATIONS , 2011, 1110.1377.

[86]  Dan Nguyen,et al.  Sherpa: CIAO Modeling and Fitting Package , 2011 .

[87]  David Polishook,et al.  SN 2011dh: DISCOVERY OF A TYPE IIb SUPERNOVA FROM A COMPACT PROGENITOR IN THE NEARBY GALAXY M51 , 2011, 1106.3551.

[88]  B. J. Butler,et al.  THE EXPANDED VERY LARGE ARRAY: A NEW TELESCOPE FOR NEW SCIENCE , 2011, 1106.0532.

[89]  D. Calzetti,et al.  CALIBRATING EXTINCTION-FREE STAR FORMATION RATE DIAGNOSTICS WITH 33 GHz FREE–FREE EMISSION IN NGC 6946 , 2011, 1105.4877.

[90]  M. Blanton,et al.  IMPROVED BACKGROUND SUBTRACTION FOR THE SLOAN DIGITAL SKY SURVEY IMAGES , 2011, 1105.1960.

[91]  N. Suntzeff,et al.  THE ULTIMATE LIGHT CURVE OF SN 1998bw/GRB 980425 , 2011, 1106.1695.

[92]  A. J. Levan,et al.  XRF 100316D/SN 2010bh AND THE NATURE OF GAMMA-RAY BURST SUPERNOVAE , 2011, 1104.5141.

[93]  N. Langer,et al.  Runaway stars as progenitors of supernovae and gamma-ray bursts , 2011, 1103.1877.

[94]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[95]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[96]  S. Barthelmy,et al.  A relativistic type Ibc supernova without a detected γ-ray burst , 2009, Nature.

[97]  Roland Diehl,et al.  THE FERMI GAMMA-RAY BURST MONITOR , 2009, 0908.0450.

[98]  A. Djupvik,et al.  The Nordic Optical Telescope , 2009, 0901.4015.

[99]  J. P. Osborne,et al.  Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs , 2008, 0812.3662.

[100]  L. A. Antonelli,et al.  The Metamorphosis of Supernova SN 2008D/XRF 080109: A Link Between Supernovae and GRBs/Hypernovae , 2008, Science.

[101]  R. Chevalier,et al.  Shock Breakout Emission from a Type Ib/c Supernova: XRT 080109/SN 2008D , 2008, 0806.0371.

[102]  Warren R. Brown,et al.  FROM SHOCK BREAKOUT TO PEAK AND BEYOND: EXTENSIVE PANCHROMATIC OBSERVATIONS OF THE TYPE Ib SUPERNOVA 2008D ASSOCIATED WITH SWIFT X-RAY TRANSIENT 080109 , 2008, 0805.2201.

[103]  E. O. Ofek,et al.  The Broad-lined Type Ic SN 2003jd , 2007, 0710.5173.

[104]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[105]  J. P. Osborne,et al.  An online repository of Swift/XRT light curves of Γ-ray bursts , 2007, 0704.0128.

[106]  M. Livio,et al.  Binary star progenitors of long gamma-ray bursts , 2007, astro-ph/0702540.

[107]  E. Waxman,et al.  GRB 060218: A Relativistic Supernova Shock Breakout , 2007, astro-ph/0702450.

[108]  Marco Bonati,et al.  The Automated Palomar 60 Inch Telescope , 2006, astro-ph/0608323.

[109]  R. Chevalier,et al.  Circumstellar Emission from Type Ib and Ic Supernovae , 2006, astro-ph/0607196.

[110]  Michael A. Nowak,et al.  CIAO: Chandra's data analysis system , 2006, SPIE Astronomical Telescopes + Instrumentation.

[111]  Bing Zhang,et al.  Low-Luminosity Gamma-Ray Bursts as a Unique Population: Luminosity Function, Local Rate, and Beaming Factor , 2006, astro-ph/0605200.

[112]  E. Rol,et al.  The GRB 060218/SN 2006aj event in the context of other gamma-ray burst supernovae , 2006, astro-ph/0605058.

[113]  E. Floc’h,et al.  Detection of Wolf-Rayet stars in host galaxies of gamma-ray bursts (GRBs) : are GRBs produced by runaway massive stars ejected from high stellar density regions? , 2006, astro-ph/0604461.

[114]  P. B. Cameron,et al.  Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions , 2006, Nature.

[115]  S. Woosley,et al.  The Supernova Gamma-Ray Burst Connection , 2006, astro-ph/0609142.

[116]  T. Piran,et al.  The interpretation and implication of the afterglow of GRB 060218 , 2006, astro-ph/0604016.

[117]  J. R. Thorstensen,et al.  GRB 060218/SN 2006aj: A Gamma-Ray Burst and Prompt Supernova at z = 0.0335 , 2006, astro-ph/0603686.

[118]  D. A. Kann,et al.  An optical supernova associated with the X-ray flash XRF 060218 , 2006, Nature.

[119]  Norway.,et al.  Supernova 2006aj and the associated X-Ray Flash 060218 , 2006, astro-ph/0603495.

[120]  J. Prieto,et al.  Early-Time Photometry and Spectroscopy of the Fast Evolving SN 2006aj Associated with GRB 060218 , 2006, astro-ph/0603377.

[121]  P. Brown,et al.  The shock break-out of GRB 060218/SN 2006aj , 2006, astro-ph/0603279.

[122]  D. Bersier,et al.  Evidence for a Supernova Associated with the X-Ray Flash 020903 , 2006, astro-ph/0602163.

[123]  T. Weekes,et al.  A new search for primordial black hole evaporations using the Whipple gamma-ray telescope , 2006 .

[124]  K. Pedersen,et al.  On the nature of nearby GRB/SN host galaxies ⋆ , 2005, astro-ph/0506686.

[125]  Gustavo A. Medrano-Cerda,et al.  The Liverpool Telescope: performance and first results , 2004, SPIE Astronomical Telescopes + Instrumentation.

[126]  James M. Moran,et al.  The Submillimeter Array , 2004, Astronomical Telescopes and Instrumentation.

[127]  T. Piran The physics of gamma-ray bursts , 2004, astro-ph/0405503.

[128]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[129]  Scott D. Barthelmy,et al.  The Burst Alert Telescope (BAT) on the SWIFT Midex Mission , 2004, SPIE Optics + Photonics.

[130]  Gregory Y. Prigozhin,et al.  High Energy Transient Explorer 2 Observations of the Extremely Soft X-Ray Flash XRF 020903 , 2004 .

[131]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[132]  David W. Hogg,et al.  Preparing Red‐Green‐Blue Images from CCD Data , 2003, astro-ph/0312483.

[133]  T. Piran,et al.  The Luminosity and Angular Distributions of Long-Duration Gamma-Ray Bursts , 2003, astro-ph/0311488.

[134]  S. R. Kulkarni,et al.  A Redshift Determination for XRF 020903: First Spectroscopic Observations of an X-Ray Flash , 2003, astro-ph/0311050.

[135]  J. Sollerman,et al.  Supernova 1998bw - the final phases , 2002, astro-ph/0204498.

[136]  Peter W. A. Roming,et al.  The Swift Ultra-Violet/Optical Telescope , 2002, SPIE Optics + Photonics.

[137]  Scott D. Barthelmy,et al.  Burst Alert Telescope (BAT) on the Swift MIDEX mission , 2000, SPIE Optics + Photonics.

[138]  P. Mazzali,et al.  A Spectroscopic Analysis of the Energetic Type Ic Hypernova SN 1997ef , 2000, astro-ph/0007222.

[139]  Richard A. Shaw,et al.  FTOOLS: A general package of software to manipulate FITS files , 1999 .

[140]  D. Watson,et al.  The Swift X-Ray Telescope , 1999, SPIE Optics + Photonics.

[141]  D. Frail,et al.  Radio emission from the unusual supernova 1998bw and its association with the γ-ray burst of 25 April 1998 , 1998, Nature.

[142]  M. C. Begam,et al.  An unusual supernova in the error box of the γ-ray burst of 25 April 1998 , 1998, Nature.

[143]  Edward L. Fitzpatrick,et al.  Correcting for the Effects of Interstellar Extinction , 1998, astro-ph/9809387.

[144]  P. Vreeswijk,et al.  A hypernova model for the supernova associated with the γ-ray burst of 25 April 1998 , 1998, Nature.

[145]  J. Hjorth,et al.  The Supernova-Gamma-Ray Burst Connection , 1998, astro-ph/9806212.

[146]  M. C. Begam,et al.  Discovery of the peculiar supernova 1998bw in the error box of GRB 980425 , 1998, astro-ph/9806175.

[147]  R. Chevalier Synchrotron Self-Absorption in Radio Supernovae , 1998 .

[148]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[149]  R. L. Aptekar,et al.  Konus-W gamma-ray burst experiment for the GGS Wind spacecraft , 1995 .

[150]  D. Burrows,et al.  Determination of Confidence Limits for Experiments with Low Numbers of Counts , 1991 .

[151]  Frank C. Jones,et al.  The plasma physics of shock acceleration , 1989 .

[152]  James E. Gunn,et al.  AN EFFICIENT LOW RESOLUTION AND MODERATE RESOLUTION SPECTROGRAPH FOR THE HALE TELESCOPE , 1982 .

[153]  W. Arnett Type I supernovae. I. Analytic solutions for the early part of the light curve , 1982 .

[154]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .

[155]  D. Perley,et al.  GRB 171205A: Host galaxy photometric properties. , 2017 .

[156]  D. Kasen Unusual Supernovae and Alternative Power Sources , 2017 .

[157]  R. Margutti,et al.  GRB 171205A: VLA detection. , 2017 .

[158]  A. U. Postigo,et al.  GRB 171205A: ALMA observations. , 2017 .

[159]  Christina Freytag,et al.  Radiative Processes In Astrophysics , 2016 .

[160]  T. Nanut,et al.  The gamma ray burst – supernova connection , 2012 .

[161]  Joshua S. Bloom,et al.  Gamma-Ray Bursts: The GRB–supernova connection , 2012 .

[162]  D. Finkbeiner,et al.  Measuring Reddening with SDSS Stellar Spectra , 2011 .

[163]  A. Castro-Tirado,et al.  GRB 060218: emergence of the underlying SN spectrum. , 2006 .

[164]  A. Szalay,et al.  Preparing Red-Green-Blue (RGB) Images from CCD Data , 2003 .

[165]  David G. Vass,et al.  Proceedings of the Society of Photo-optical Instrumentation Engineers (SPIE) , 1997 .