On the bipanpositionable bipanconnectedness of hypercubes
暂无分享,去创建一个
[1] Jywe-Fei Fang. The bipanconnectivity and m-panconnectivity of the folded hypercube , 2007, Theor. Comput. Sci..
[2] Junming Xu. Topological Structure and Analysis of Interconnection Networks , 2002, Network Theory and Applications.
[3] Lih-Hsing Hsu,et al. Hamiltonicity of hypercubes with a constraint of required and faulty edges , 2007, J. Comb. Optim..
[4] Jimmy J. M. Tan,et al. Embedding hamiltonian paths in hypercubes with a required vertex in a fixed position , 2008, Inf. Process. Lett..
[5] J. E. Williamson. Panconnected graphs II , 1977 .
[6] Cheng-Kuan Lin,et al. Panpositionable Hamiltonian Graphs , 2006, Ars Comb..
[7] Jun-Ming Xu,et al. Edge fault tolerance analysis of a class of interconnection networks , 2006, Appl. Math. Comput..
[8] Meijie Ma,et al. Path embedding in faulty hypercubes , 2007, Appl. Math. Comput..
[9] Jimmy J. M. Tan,et al. Bipanconnectivity and edge-fault-tolerant bipancyclicity of hypercubes , 2003, Inf. Process. Lett..
[10] Jimmy J. M. Tan,et al. Super-connectivity and super-edge-connectivity for some interconnection networks , 2003, Appl. Math. Comput..
[11] M. Lewinter,et al. Hyper-Hamilton Laceable and Caterpillar-Spannable Product Graphs , 1997 .
[12] Jimmy J. M. Tan,et al. Panpositionable hamiltonicity and panconnectivity of the arrangement graphs , 2008, Appl. Math. Comput..
[13] F. Leighton,et al. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .
[14] Chang-Hsiung Tsai. Embedding of meshes in Möbius cubes , 2008, Theor. Comput. Sci..
[15] M. H. Schultz,et al. Topological properties of hypercubes , 1988, IEEE Trans. Computers.
[16] Cheng-Kuan Lin,et al. On the spanning connectivity and spanning laceability of hypercube-like networks , 2007, Theor. Comput. Sci..
[17] J. A. Bondy,et al. Graph Theory with Applications , 1978 .