On the bipanpositionable bipanconnectedness of hypercubes

A bipartite graph G is bipanconnected if, for any two distinct vertices x and y of G, it contains an [x,y]-path of length l for each integer l satisfying dG(x,y)≤/≤|V(G)|-1 and 2|(l-dG(x,y)), where dG(x,y) denotes the distance between vertices x and y in G and V(G) denotes the vertex set of G. We say a bipartite graph G is bipanpositionably bipanconnected if, for any two distinct vertices x and y of G and for any vertex z∈V(G)-{x,y}, it contains a path Pl,k of length l such that x is the beginning vertex of Pl,k, z is the (k+1)-th vertex of Pl,k, and y is the ending vertex of Pl,k for each integer l satisfying dG(x,z)+dG(y,z)≤/≤|V(G)|-1 and 2|(l-dG(x,z)-dG(y,z)) and for each integer k satisfying dG(x,z)≤k≤l-dG(y,z) and 2|(k-dG(x,z)). In this paper, we prove that an n-cube is bipanpositionably bipanconnected if n≥4. As a consequence, many properties of hypercubes, such as bipancyclicity, bipanconnectedness, bipanpositionable Hamiltonicity, etc., follow directly from our result.

[1]  Jywe-Fei Fang The bipanconnectivity and m-panconnectivity of the folded hypercube , 2007, Theor. Comput. Sci..

[2]  Junming Xu Topological Structure and Analysis of Interconnection Networks , 2002, Network Theory and Applications.

[3]  Lih-Hsing Hsu,et al.  Hamiltonicity of hypercubes with a constraint of required and faulty edges , 2007, J. Comb. Optim..

[4]  Jimmy J. M. Tan,et al.  Embedding hamiltonian paths in hypercubes with a required vertex in a fixed position , 2008, Inf. Process. Lett..

[5]  J. E. Williamson Panconnected graphs II , 1977 .

[6]  Cheng-Kuan Lin,et al.  Panpositionable Hamiltonian Graphs , 2006, Ars Comb..

[7]  Jun-Ming Xu,et al.  Edge fault tolerance analysis of a class of interconnection networks , 2006, Appl. Math. Comput..

[8]  Meijie Ma,et al.  Path embedding in faulty hypercubes , 2007, Appl. Math. Comput..

[9]  Jimmy J. M. Tan,et al.  Bipanconnectivity and edge-fault-tolerant bipancyclicity of hypercubes , 2003, Inf. Process. Lett..

[10]  Jimmy J. M. Tan,et al.  Super-connectivity and super-edge-connectivity for some interconnection networks , 2003, Appl. Math. Comput..

[11]  M. Lewinter,et al.  Hyper-Hamilton Laceable and Caterpillar-Spannable Product Graphs , 1997 .

[12]  Jimmy J. M. Tan,et al.  Panpositionable hamiltonicity and panconnectivity of the arrangement graphs , 2008, Appl. Math. Comput..

[13]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[14]  Chang-Hsiung Tsai Embedding of meshes in Möbius cubes , 2008, Theor. Comput. Sci..

[15]  M. H. Schultz,et al.  Topological properties of hypercubes , 1988, IEEE Trans. Computers.

[16]  Cheng-Kuan Lin,et al.  On the spanning connectivity and spanning laceability of hypercube-like networks , 2007, Theor. Comput. Sci..

[17]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .