A Comparison of 2-D Moment-Based Description Techniques

Moment invariants are properties of connected regions in binary images that are invariant to translation, rotation and scale. They are useful because they define a simply calculated set of region properties that can be used for shape classification and part recognition. Orthogonal moment invariants allow for accurate reconstruction of the described shape. Generic Fourier Descriptors yield spectral features and have better retrieval performance due to multi-resolution analysis in both radial and circular directions of the shape. In this paper we first compare various moment-based shape description techniques then we propose a method that, after a previous image partition into classes by morphological features, associates the appropriate technique with each class, i.e. the technique that better recognizes the images of that class. The results clearly demonstrate the effectiveness of this new method regard to described techniques.

[1]  K. R. Ramakrishnan,et al.  Attitude estimation using moment invariants , 1993, Pattern Recognit. Lett..

[2]  A. Ardeshir Goshtasby,et al.  Template Matching in Rotated Images , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  M. Teague Image analysis via the general theory of moments , 1980 .

[4]  Th. M. Hupkens,et al.  Noise and intensity invariant moments , 1995, Pattern Recognit. Lett..

[5]  Yajun Li,et al.  Reforming the theory of invariant moments for pattern recognition , 1992, Pattern Recognit..

[6]  Jan Flusser,et al.  Pattern recognition by affine moment invariants , 1993, Pattern Recognit..

[7]  Maher A. Sid-Ahmed,et al.  Machine recognition of optically captured machine printed arabic text , 1990, Pattern Recognit..

[8]  G. Taubin,et al.  Object recognition based on moment (or algebraic) invariants , 1992 .

[9]  Jan Flusser,et al.  A moment-based approach to registration of images with affine geometric distortion , 1994, IEEE Trans. Geosci. Remote. Sens..

[10]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[11]  S. Maitra Moment invariants , 1979, Proceedings of the IEEE.

[12]  Roland T. Chin,et al.  On Image Analysis by the Methods of Moments , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Jan Flusser,et al.  Affine moment invariants: a new tool for character recognition , 1994, Pattern Recognit. Lett..

[14]  Majid Ahmadi,et al.  Pattern recognition with moment invariants: A comparative study and new results , 1991, Pattern Recognit..

[15]  Robert B. McGhee,et al.  Aircraft Identification by Moment Invariants , 1977, IEEE Transactions on Computers.

[16]  Olaf Kübler,et al.  Complete Sets of Complex Zernike Moment Invariants and the Role of the Pseudoinvariants , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Andrzej Sluzek,et al.  Identification and inspection of 2-D objects using new moment-based shape descriptors , 1995, Pattern Recognit. Lett..

[18]  K. R. Ramakrishnan,et al.  An iterative solution for object pose parameters using image moments , 1996, Pattern Recognit. Lett..

[19]  Jan Flusser,et al.  On the inverse problem of rotation moment invariants , 2002, Pattern Recognit..

[20]  R. Wong,et al.  Scene matching with invariant moments , 1978 .

[21]  Glenn Healey,et al.  Using Zernike moments for the illumination and geometry invariant classification of multispectral texture , 1998, IEEE Trans. Image Process..

[22]  Jan Flusser,et al.  On the independence of rotation moment invariants , 2000, Pattern Recognit..

[23]  Basil G. Mertzios,et al.  Statistical pattern recognition using efficient two-dimensional moments with applications to character recognition , 1993, Pattern Recognit..

[24]  Alireza Khotanzad,et al.  Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Kin-Man Lam,et al.  Generation of moment invariants and their uses for character recognition , 1995, Pattern Recognit. Lett..

[26]  Andrew Zisserman,et al.  Geometric invariance in computer vision , 1992 .