Low-complexity adaptive lossless compression of hyperspectral imagery

A low-complexity, adaptive predictive technique for lossless compression of hyperspectral imagery is described. This technique is designed to be suitable for implementation in hardware such as a field programmable gate array (FPGA); such an implementation could be used for high-speed compression of hyperspectral imagery onboard a spacecraft. The predictive step of the technique makes use of the sign algorithm, which is a relative of the least mean square (LMS) algorithm from the field of low-complexity adaptive filtering. The compressed data stream consists of prediction residuals encoded using a method similar to that of the JPEG-LS lossless image compression standard. Compression results are presented for several datasets including some raw Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) datasets and raw Atmospheric Infrared Sounder (AIRS) datasets. The compression effectiveness obtained with the technique is competitive with that of the best of previously described techniques with similar complexity.

[1]  Françoise Beaufays,et al.  Transform-domain adaptive filters: an analytical approach , 1995, IEEE Trans. Signal Process..

[2]  Irina Gladkova,et al.  Compression algorithm for infrared hyperspectral sounder data , 2005, Data Compression Conference.

[3]  Allen Gersho,et al.  Adaptive filtering with binary reinforcement , 1984, IEEE Trans. Inf. Theory.

[4]  Aaron Kiely,et al.  ICER-3D: A Progressive Wavelet-Based Compressor for Hyperspectral Images , 2005 .

[5]  R. Unbehauen,et al.  Two-dimensional LMS adaptive filter incorporating a local-mean estimator for image processing , 1993 .

[6]  Mohiy M. Hadhoud,et al.  The effect of the image local mean on the two-dimensional least mean square algorithm weight convergence , 1989 .

[7]  S. T. Alexander,et al.  Image compression results using the LMS adaptive algorithm , 1985, IEEE Trans. Acoust. Speech Signal Process..

[8]  A. Peterson,et al.  Transform domain LMS algorithm , 1983 .

[9]  Timothy J. Schmit,et al.  Data compression studies for NOAA Hyperspectral Environmental Suite (HES) using 3D integer wavelet transforms with 3D set partitioning in hierarchical trees , 2004, SPIE Remote Sensing.

[10]  Bernard Widrow,et al.  Adaptive switching circuits , 1988 .

[11]  Nasir D. Memon,et al.  Context-based, adaptive, lossless image coding , 1997, IEEE Trans. Commun..

[12]  A. Venkatachalam,et al.  Hyperspectral image restoration and coding , 2002, Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002..

[13]  Luciano Alparone,et al.  Near-lossless compression of 3-D optical data , 2001, IEEE Trans. Geosci. Remote. Sens..

[14]  B. Widrow,et al.  Adaptive noise cancelling: Principles and applications , 1975 .

[15]  Enrico Magli,et al.  Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC , 2004, IEEE Geoscience and Remote Sensing Letters.

[16]  Guillermo Sapiro,et al.  The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS , 2000, IEEE Trans. Image Process..

[17]  Nasir D. Memon,et al.  Context-based lossless interband compression-extending CALIC , 2000, IEEE Trans. Image Process..

[18]  Lenan Wu,et al.  Enhanced DPCM using LMS predictor and composite source model , 1997 .

[19]  Arto Kaarna,et al.  Lossless hyperspectral image compression via linear prediction , 2002, SPIE Defense + Commercial Sensing.

[20]  David W. Thomas,et al.  The two-dimensional adaptive LMS (TDLMS) algorithm , 1988 .

[21]  Nazeeh Aranki,et al.  Spectral Ringing Artifacts in Hyperspectral Image Data Compression , 2006, Hyperspectral Data Compression.

[22]  Matthew A. Klimesh,et al.  Low-complexity lossless compression of hyperspectral imagery via adaptive filtering , 2005 .

[23]  David C. van Voorhis,et al.  Optimal source codes for geometrically distributed integer alphabets (Corresp.) , 1975, IEEE Trans. Inf. Theory.

[24]  S. Golomb Run-length encodings. , 1966 .

[25]  Neri Merhav,et al.  Optimal prefix codes for sources with two-sided geometric distributions , 2000, IEEE Trans. Inf. Theory.

[26]  Giovanni Motta,et al.  Low-complexity lossless compression of hyperspectral imagery via linear prediction , 2005, IEEE Signal Processing Letters.

[27]  B D Clymer,et al.  Adaptive filtering for high resolution magnetic resonance images , 1996, Journal of magnetic resonance imaging : JMRI.