Total weight choosability of graphs with bounded maximum average degree

Abstract A total weighting of a graph G is a function ϕ that assigns a weight to each vertex and each edge of G . The vertex-sum of a vertex v with respect to ϕ is S ϕ ( v ) = ϕ ( v ) + ∑ e ∈ E ( v ) ϕ ( e ) , where E ( v ) is the set of edges incident to v . A total weighting is proper if adjacent vertices have distinct vertex-sums. A graph G is ( k , k ′ ) -choosable if the following is true: Whenever each vertex x is assigned a set L ( x ) of k real numbers and each edge e is assigned a set L ( e ) of k ′ real numbers, there is a proper total weighting ϕ of G with ϕ ( y ) ∈ L ( y ) for all y ∈ V ( G ) ∪ E ( G ) . In this paper, we prove that for p ∈ { 5 , 7 , 11 } , a graph G without isolated edges and with mad ( G ) ≤ p − 1 is ( 1 , p ) -choosable. In particular, triangle-free planar graphs are ( 1 , 5 ) -choosable.

[1]  André Raspaud,et al.  On weight choosabilities of graphs with bounded maximum average degree , 2017, Discret. Appl. Math..

[2]  Bruce A. Reed,et al.  Vertex-Colouring Edge-Weightings , 2007, Comb..

[3]  Xuding Zhu,et al.  Total weight choosability of Mycielski graphs , 2017, J. Comb. Optim..

[4]  T. Wong,et al.  Total weight choosability of d-degenerate graphs , 2015, 1510.00809.

[5]  Noga Alon Combinatorial Nullstellensatz , 1999, Combinatorics, Probability and Computing.

[6]  Daqing Yang,et al.  On total weight choosability of graphs , 2013, J. Comb. Optim..

[7]  Xuding Zhu,et al.  Every graph is (2,3)-choosable , 2016, Comb..

[8]  Xuding Zhu,et al.  List Total Weighting of Graphs , 2010 .

[9]  Qinglin Yu,et al.  On vertex-coloring 13-edge-weighting , 2008 .

[10]  Xuding Zhu,et al.  Permanent Index of Matrices Associated with Graphs , 2017, Electron. J. Comb..

[11]  Xuding Zhu,et al.  Total weight choosability of Cartesian product of graphs , 2012, Eur. J. Comb..

[12]  Daniel W. Cranston,et al.  The 1 , 2 , 3-Conjecture And 1 , 2-Conjecture For Sparse Graphs , 2014, Discuss. Math. Graph Theory.

[13]  Jakub Przybylo,et al.  Total Weight Choosability of Graphs , 2011, Electron. J. Comb..

[14]  A. Thomason,et al.  Edge weights and vertex colours , 2004 .

[15]  Tomasz Bartnicki,et al.  The n-ordered graphs: A new graph class , 2009 .

[17]  Xuding Zhu,et al.  Total Weight Choosability of Cone Graphs , 2016, Graphs Comb..

[18]  Bruce A. Reed,et al.  Vertex colouring edge partitions , 2005, J. Comb. Theory B.

[19]  Xuding Zhu,et al.  Graphs with maximum average degree less than 114 are (1, 3)-choosable , 2018, Discret. Math..

[20]  Noga Alon,et al.  Colorings and orientations of graphs , 1992, Comb..

[21]  Xuding Zhu,et al.  Total Weight Choosability of Trees , 2017, SIAM J. Discret. Math..

[22]  Florian Pfender,et al.  Vertex-coloring edge-weightings: Towards the 1-2-3-conjecture , 2010, J. Comb. Theory B.