Total weight choosability of graphs with bounded maximum average degree
暂无分享,去创建一个
[1] André Raspaud,et al. On weight choosabilities of graphs with bounded maximum average degree , 2017, Discret. Appl. Math..
[2] Bruce A. Reed,et al. Vertex-Colouring Edge-Weightings , 2007, Comb..
[3] Xuding Zhu,et al. Total weight choosability of Mycielski graphs , 2017, J. Comb. Optim..
[4] T. Wong,et al. Total weight choosability of d-degenerate graphs , 2015, 1510.00809.
[5] Noga Alon. Combinatorial Nullstellensatz , 1999, Combinatorics, Probability and Computing.
[6] Daqing Yang,et al. On total weight choosability of graphs , 2013, J. Comb. Optim..
[7] Xuding Zhu,et al. Every graph is (2,3)-choosable , 2016, Comb..
[8] Xuding Zhu,et al. List Total Weighting of Graphs , 2010 .
[9] Qinglin Yu,et al. On vertex-coloring 13-edge-weighting , 2008 .
[10] Xuding Zhu,et al. Permanent Index of Matrices Associated with Graphs , 2017, Electron. J. Comb..
[11] Xuding Zhu,et al. Total weight choosability of Cartesian product of graphs , 2012, Eur. J. Comb..
[12] Daniel W. Cranston,et al. The 1 , 2 , 3-Conjecture And 1 , 2-Conjecture For Sparse Graphs , 2014, Discuss. Math. Graph Theory.
[13] Jakub Przybylo,et al. Total Weight Choosability of Graphs , 2011, Electron. J. Comb..
[14] A. Thomason,et al. Edge weights and vertex colours , 2004 .
[15] Tomasz Bartnicki,et al. The n-ordered graphs: A new graph class , 2009 .
[17] Xuding Zhu,et al. Total Weight Choosability of Cone Graphs , 2016, Graphs Comb..
[18] Bruce A. Reed,et al. Vertex colouring edge partitions , 2005, J. Comb. Theory B.
[19] Xuding Zhu,et al. Graphs with maximum average degree less than 114 are (1, 3)-choosable , 2018, Discret. Math..
[20] Noga Alon,et al. Colorings and orientations of graphs , 1992, Comb..
[21] Xuding Zhu,et al. Total Weight Choosability of Trees , 2017, SIAM J. Discret. Math..
[22] Florian Pfender,et al. Vertex-coloring edge-weightings: Towards the 1-2-3-conjecture , 2010, J. Comb. Theory B.