New Nordhaus-Gaddum-type results for the Kirchhoff index

Let G be a connected graph. The resistance distance between any two vertices of G is defined as the net effective resistance between them if each edge of G is replaced by a unit resistor. The Kirchhoff index is the sum of resistance distances between all pairs of vertices in G. Zhou and Trinajstić (Chem Phys Lett 455(1–3):120–123, 2008) obtained a Nordhaus-Gaddum-type result for the Kirchhoff index by obtaining lower and upper bounds for the sum of the Kirchhoff index of a graph and its complement. In this paper, by making use of the Cauchy-Schwarz inequality, spectral graph theory and Foster’s formula, we give better lower and upper bounds. In particular, the lower bound turns out to be tight. Furthermore, we establish lower and upper bounds on the product of the Kirchhoff index of a graph and its complement.

[1]  Bo Zhou,et al.  A note on Kirchhoff index , 2008 .

[2]  István Lukovits,et al.  Extensions of the Wiener Number , 1996, J. Chem. Inf. Comput. Sci..

[3]  Wayne Goddard,et al.  Nordhaus-Gaddum bounds for independent domination , 2003, Discret. Math..

[4]  José Luis Palacios Closed‐form formulas for Kirchhoff index , 2001 .

[5]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[6]  Hanyuan Deng,et al.  The second maximal and minimal Kirchhoff indices of unicyclic graphs 1 , 2009 .

[7]  István Lukovits,et al.  On the Definition of the Hyper-Wiener Index for Cycle-Containing Structures , 1995, J. Chem. Inf. Comput. Sci..

[8]  Bo Zhou,et al.  The Kirchhoff index and the matching number , 2009 .

[9]  Alex Bavelas A Mathematical Model for Group Structures , 1948 .

[10]  Ernesto Estrada,et al.  Topological atomic displacements, Kirchhoff and Wiener indices of molecules , 2009, 0912.2628.

[11]  Danail Bonchev,et al.  Vertex-weightings for distance moments and thorny graphs , 2007, Discret. Appl. Math..

[12]  J. Ivey,et al.  Ann Arbor, Michigan , 1969 .

[13]  Gary Chartrand,et al.  ON THE INDEPENDENCE NUMBERS OF COMPLEMENTARY GRAPHS , 1974 .

[14]  T. D. Morley,et al.  Eigenvalues of the Laplacian of a graph , 1985 .

[15]  Xavier L. Hubaut,et al.  Strongly regular graphs , 1975, Discret. Math..

[16]  M. Behzad,et al.  Complementary Graphs and Edge Chromatic Numbers , 1971 .

[17]  Yuan Hong,et al.  A sharp upper bound for the spectral radius of the Nordhaus-Gaddum type , 2000, Discret. Math..

[18]  I. Gutman,et al.  Resistance distance and Laplacian spectrum , 2003 .

[19]  Douglas J. Klein,et al.  Building-block Computation of Wiener-type Indices for the Virtual Screening of Combinatorial Libraries* , 2002 .

[20]  Douglas J. Klein,et al.  Computing Wiener-Type Indices for Virtual Combinatorial Libraries Generated from Heteroatom-Containing Building Blocks , 2002, J. Chem. Inf. Comput. Sci..

[21]  Bojan Mohar,et al.  The Quasi-Wiener and the Kirchhoff Indices Coincide , 1996, J. Chem. Inf. Comput. Sci..

[22]  Heping Zhang,et al.  Kirchhoff index of composite graphs , 2009, Discret. Appl. Math..

[23]  Bo Zhou,et al.  On resistance-distance and Kirchhoff index , 2009 .

[24]  Bo Zhou On sum of powers of the Laplacian eigenvalues of graphs , 2008 .

[25]  Heping Zhang,et al.  Resistance distance and Kirchhoff index in circulant graphs , 2007 .

[26]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[27]  José Luis Palacios Foster's Formulas via Probability and the Kirchhoff Index , 2004 .

[28]  D. Cvetkovic,et al.  Spectra of Graphs: Theory and Applications , 1997 .

[29]  H. Wiener Structural determination of paraffin boiling points. , 1947, Journal of the American Chemical Society.

[30]  Douglas J. Klein,et al.  Resistance-Distance Sum Rules* , 2002 .

[31]  E. A. Nordhaus,et al.  On Complementary Graphs , 1956 .

[32]  L. Beineke,et al.  Selected Topics in Graph Theory 2 , 1985 .

[33]  Yujun Yang,et al.  Unicyclic graphs with extremal Kirchhoff index , 2008 .