A note on the pseudo Stolarsky type inequality for the -integral

Daraby (2012) proved the pseudo Stolarsky type inequality for pseudo-integrals and Mesiar and Pap (1999) defined the pseudo-integrals with respect to a sup-or int- decomposable measure. In this paper, we defined the interval-valued pseudo-integral(for short, g ? -integral) in the case of a generated semiring with an interval-valued generator g ? by using interval-representable pseudo-operations and prove the pseudo Stolarsky type inequality for the g ? -integrals.

[1]  Gregory T. Adams,et al.  The fuzzy integral , 1980 .

[2]  Congxin Wu,et al.  Generalized fuzzy integrals. Part I: fundamental concepts , 1993 .

[3]  Jin-Xuan Fang,et al.  A note on the convergence theorem of generalized fuzzy integrals , 2002, Fuzzy Sets Syst..

[4]  Michio Sugeno,et al.  Autocontinuity, convergence in measure, and convergence in distribution , 1997, Fuzzy Sets Syst..

[5]  M. Grabisch Fuzzy integral in multicriteria decision making , 1995 .

[6]  Jin-Xuan Fang,et al.  Some properties of sequences of generalized fuzzy integrable functions , 2007, Fuzzy Sets Syst..

[7]  M. Sugeno,et al.  Pseudo-additive measures and integrals , 1987 .

[8]  Radko Mesiar,et al.  Pseudo-arithmetical operations as a basis for the general measure and integration theory , 2004, Inf. Sci..

[9]  Bayaz Daraby Generalization of the Stolarsky type inequality for pseudo-integrals , 2012, Fuzzy Sets Syst..

[10]  Kurt Weichselberger The theory of interval-probability as a unifying concept for uncertainty , 2000, Int. J. Approx. Reason..

[11]  R. Aumann INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .

[12]  Radko Mesiar,et al.  Idempotent integral as limit of g-integrals , 1999, Fuzzy Sets Syst..

[13]  Glad Deschrijver,et al.  Generalized arithmetic operators and their relationship to t-norms in interval-valued fuzzy set theory , 2009, Fuzzy Sets Syst..

[14]  Jin-Xuan Fang On the convergence theorems of generalized fuzzy integral sequence , 2001, Fuzzy Sets Syst..

[15]  Endre Pap,et al.  Generalized pseudo-convolution in the theory of probabilistic metric spaces, information, fuzzy numbers, optimization, system theory , 1999, Fuzzy Sets Syst..

[16]  Shiji Song,et al.  Generalized fuzzy integrals, part 3: convergent theorems , 1995 .

[17]  Lee-Chae Jang,et al.  A note on the interval-valued generalized fuzzy integral by means of an interval-representable pseudo-multiplication and their convergence properties , 2013, Fuzzy Sets Syst..