PRMT5–PTEN molecular pathway regulates senescence and self-renewal of primary glioblastoma neurosphere cells

[1]  T. Tao,et al.  PTEN/Akt‐p27kip1 Signaling Promote the BM‐MSCs Senescence and Apoptosis in SLE Patients , 2015, Journal of cellular biochemistry.

[2]  H. Fathallah-Shaykh,et al.  Expression of PRMT5 correlates with malignant grade in gliomas and plays a pivotal role in tumor growth in vitro , 2014, Journal of Neuro-Oncology.

[3]  Guido Marcucci,et al.  Genetic validation of the protein arginine methyltransferase PRMT5 as a candidate therapeutic target in glioblastoma. , 2014, Cancer research.

[4]  Kaushal Joshi,et al.  Tumor‐Specific Activation of the C‐JUN/MELK Pathway Regulates Glioma Stem Cell Growth in a p53‐Dependent Manner , 2013, Stem cells.

[5]  Alfonso Bellacosa,et al.  A Secreted PTEN Phosphatase That Enters Cells to Alter Signaling and Survival , 2013 .

[6]  Eric A Bushong,et al.  Dedifferentiation of Neurons and Astrocytes by Oncogenes Can Induce Gliomas in Mice , 2012, Science.

[7]  T. Cloughesy,et al.  Molecular pathology in adult high‐grade gliomas: from molecular diagnostics to target therapies , 2012, Neuropathology and applied neurobiology.

[8]  Lynda Chin,et al.  Emerging insights into the molecular and cellular basis of glioblastoma. , 2012, Genes & development.

[9]  Gary L Gallia,et al.  Targeting the AKT pathway in glioblastoma. , 2011, Current pharmaceutical design.

[10]  J. Clohessy,et al.  Pro-senescence therapy for cancer treatment , 2011, Nature Reviews Cancer.

[11]  B. Kim,et al.  PTEN status switches cell fate between premature senescence and apoptosis in glioma exposed to ionizing radiation , 2011, Cell Death and Differentiation.

[12]  Jing Wang,et al.  Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence , 2010, Nature.

[13]  Steven Piantadosi,et al.  Survival of Patients with Newly Diagnosed Glioblastoma Treated with Radiation and Temozolomide in Research Studies in the United States , 2010, Clinical Cancer Research.

[14]  J. Clohessy,et al.  A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. , 2010, The Journal of clinical investigation.

[15]  Sascha Karberg Switching on Epigenetic Therapy , 2009, Cell.

[16]  Xinbin Chen,et al.  PRMT5 is required for cell-cycle progression and p53 tumor suppressor function , 2009, Nucleic acids research.

[17]  R. Mirimanoff,et al.  Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. , 2009, The Lancet. Oncology.

[18]  Robert L Moritz,et al.  PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing , 2009, Nature Structural &Molecular Biology.

[19]  D. Busam,et al.  An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2008, Science.

[20]  Y. Saeki,et al.  Histone Deacetylase Inhibitors Augment Antitumor Efficacy of Herpes-based Oncolytic Viruses. , 2008, Molecular therapy : the journal of the American Society of Gene Therapy.

[21]  Dean W. Felsher,et al.  Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation , 2007, Proceedings of the National Academy of Sciences.

[22]  Mark W. Dewhirst,et al.  Glioma stem cells promote radioresistance by preferential activation of the DNA damage response , 2006, Nature.

[23]  Yuri Kotliarov,et al.  Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. , 2006, Cancer cell.

[24]  R. Henkelman,et al.  Identification of human brain tumour initiating cells , 2004, Nature.

[25]  Sharmistha Pal,et al.  Human SWI/SNF-Associated PRMT5 Methylates Histone H3 Arginine 8 and Negatively Regulates Expression of ST7 and NM23 Tumor Suppressor Genes , 2004, Molecular and Cellular Biology.

[26]  Cynthia Hawkins,et al.  Identification of a cancer stem cell in human brain tumors. , 2003, Cancer research.

[27]  N. Dyson,et al.  A revised picture of the E2F transcriptional network and RB function. , 2002, Current opinion in cell biology.

[28]  E. Nicolas,et al.  Transcriptional Repression by the Retinoblastoma Protein through the Recruitment of a Histone Methyltransferase , 2001, Molecular and Cellular Biology.

[29]  S. Gonzalo,et al.  Linking the Rb and polycomb pathways. , 2001, Molecular cell.

[30]  L. Schriml,et al.  Mutational spectra of PTEN/MMAC1 gene: a tumor suppressor with lipid phosphatase activity. , 1999, Journal of the National Cancer Institute.

[31]  James M. Roberts,et al.  CDK inhibitors: positive and negative regulators of G1-phase progression. , 1999, Genes & development.

[32]  José Luis de la Pompa,et al.  Negative Regulation of PKB/Akt-Dependent Cell Survival by the Tumor Suppressor PTEN , 1998, Cell.

[33]  Tomohiko Maehama,et al.  The Tumor Suppressor, PTEN/MMAC1, Dephosphorylates the Lipid Second Messenger, Phosphatidylinositol 3,4,5-Trisphosphate* , 1998, The Journal of Biological Chemistry.

[34]  L. Hengst,et al.  Inhibitors of the Cip/Kip family. , 1998, Current topics in microbiology and immunology.

[35]  M. Wigler,et al.  PTEN, a Putative Protein Tyrosine Phosphatase Gene Mutated in Human Brain, Breast, and Prostate Cancer , 1997, Science.

[36]  C Roskelley,et al.  A biomarker that identifies senescent human cells in culture and in aging skin in vivo. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[37]  R. Weinberg,et al.  The retinoblastoma protein and cell cycle control , 1995, Cell.

[38]  W. Kaelin,et al.  Transcriptional control by E2F. , 1995, Seminars in cancer biology.

[39]  David M. Livingston,et al.  Functional interactions of the retinoblastoma protein with mammalian D-type cyclins , 1993, Cell.

[40]  M. Ewen,et al.  Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. , 1993, Genes & development.

[41]  D. Templeton,et al.  Biological function of the retinoblastoma protein requires distinct domains for hyperphosphorylation and transcription factor binding , 1992, Molecular and cellular biology.

[42]  R. Weinberg,et al.  Regulation of retinoblastoma protein functions by ectopic expression of human cyclins , 1992, Cell.

[43]  J. Shay,et al.  A role for both RB and p53 in the regulation of human cellular senescence. , 1991, Experimental cell research.

[44]  S. Goldstein Replicative senescence: the human fibroblast comes of age. , 1990, Science.

[45]  T. Sorger,et al.  Alterations in the responsiveness of senescent cells to growth factors. , 1989, Journal of gerontology.

[46]  R. Schimke,et al.  Defining cellular senescence in IMR-90 cells: a flow cytometric analysis. , 1988, Proceedings of the National Academy of Sciences of the United States of America.