Degenerate Variational Integrators for Magnetic Field Line Flow and Guiding Center Trajectories

Symplectic integrators offer many advantages for the numerical solution of Hamiltonian differential equations, including bounded energy error and the preservation of invariant sets. Two of the central Hamiltonian systems encountered in plasma physics --- the flow of magnetic field lines and the guiding center motion of magnetized charged particles --- resist symplectic integration by conventional means because the dynamics are most naturally formulated in non-canonical coordinates, i.e., coordinates lacking the familiar $(q, p)$ partitioning. Recent efforts made progress toward non-canonical symplectic integration of these systems by appealing to the variational integration framework; however, those integrators were multistep methods and later found to be numerically unstable due to parasitic mode instabilities. This work eliminates the multistep character and, therefore, the parasitic mode instabilities via an adaptation of the variational integration formalism that we deem ``degenerate variational integration''. Both the magnetic field line and guiding center Lagrangians are degenerate in the sense that their resultant Euler-Lagrange equations are systems of first-order ODEs. We show that retaining the same degree of degeneracy when constructing a discrete Lagrangian yields one-step variational integrators preserving a non-canonical symplectic structure on the original Hamiltonian phase space. The advantages of the new algorithms are demonstrated via numerical examples, demonstrating superior stability compared to existing variational integrators for these systems and superior qualitative behavior compared to non-conservative algorithms.

[1]  Bülent Karasözen,et al.  Poisson integrators , 2004, Math. Comput. Model..

[2]  J. Marsden,et al.  Introduction to mechanics and symmetry , 1994 .

[3]  P. Channell,et al.  Integrators for Lie-Poisson or dynamical systems , 1991 .

[4]  R. Ruth A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.

[5]  Hong Qin,et al.  Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme , 2012, 1401.6723.

[6]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[7]  Ernst Hairer,et al.  Backward error analysis for multistep methods , 1999, Numerische Mathematik.

[8]  Bradley Allan Shadwick,et al.  Variational formulation of macro-particle plasma simulation algorithms , 2014 .

[9]  Jerrold E. Marsden,et al.  Variational integrators for electric circuits , 2011, J. Comput. Phys..

[10]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[11]  W. A. Cooper,et al.  NBI fast ion confinement in the helical core of MAST hybrid-like plasmas , 2014 .

[12]  Hong Qin,et al.  Volume-preserving algorithms for charged particle dynamics , 2015, J. Comput. Phys..

[13]  R. Budny,et al.  A description of the full-particle-orbit-following SPIRAL code for simulating fast-ion experiments in tokamaks , 2013 .

[14]  Tuomas Koskela,et al.  Monte Carlo method and High Performance Computing for solving Fokker-Planck equation of minority plasma particles , 2015, 1510.06221.

[15]  Melvin Leok,et al.  Discrete Hamiltonian Variational Integrators , 2010, 1001.1408.

[16]  Fernando Casas,et al.  On the Numerical Integration of Ordinary Differential Equations by Processed Methods , 2004, SIAM J. Numer. Anal..

[17]  Francisco Castejón-Magaña,et al.  ISDEP: Integrator of stochastic differential equations for plasmas , 2012, Comput. Phys. Commun..

[18]  J. Burby,et al.  Toroidal regularization of the guiding center Lagrangian , 2017, 1709.02867.

[19]  R. Ruth,et al.  Fourth-order symplectic integration , 1990 .

[20]  Simppa Äkäslompolo,et al.  ASCOT: Solving the kinetic equation of minority particle species in tokamak plasmas , 2013, Comput. Phys. Commun..

[21]  C. Scovel,et al.  Symplectic integration of Hamiltonian systems , 1990 .

[22]  G. Quispel,et al.  Geometric integrators for ODEs , 2006 .

[23]  M. S. Chance,et al.  Hamiltonian guiding center drift orbit calculation for plasmas of arbitrary cross section , 1984 .

[24]  H. Qin,et al.  Gauge properties of the guiding center variational symplectic integrator , 2012, 1401.6725.

[25]  J. W. Humberston Classical mechanics , 1980, Nature.

[26]  J. Marsden,et al.  Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators , 1988 .

[27]  M. Kraus Projected Variational Integrators for Degenerate Lagrangian Systems , 2017, 1708.07356.

[28]  J. M. Sanz-Serna,et al.  Runge-kutta schemes for Hamiltonian systems , 1988 .

[29]  T. Frankel The geometry of physics : an introduction , 2004 .

[30]  E. G. Evstatiev,et al.  Variational formulation of particle algorithms for kinetic E&M plasma simulations , 2012, 2016 IEEE International Conference on Plasma Science (ICOPS).

[31]  J. Cary,et al.  Noncanonical Hamiltonian mechanics and its application to magnetic field line flow , 1983 .

[32]  Robert G. Littlejohn,et al.  Variational principles of guiding centre motion , 1983, Journal of Plasma Physics.

[33]  C. Ellison Development of Multistep and Degenerate Variational Integrators for Applications in Plasma Physics , 2016 .

[34]  Yulei Wang,et al.  The accurate particle tracer code , 2016, Comput. Phys. Commun..

[35]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[36]  L. Einkemmer Structure preserving numerical methods for the Vlasov equation , 2016, 1604.02616.

[37]  William Tang,et al.  Development of variational guiding center algorithms for parallel calculations in experimental magnetic equilibria , 2015 .

[38]  Mathieu Desbrun,et al.  Variational Partitioned Runge–Kutta Methods for Lagrangians Linear in Velocities , 2014, Mathematics.

[39]  Shuangxi Zhang,et al.  Comment on "Symplectic integration of magnetic systems" by Stephen D. Webb [J. Comput. Phys. 270(2014) 570-576] , 2015, J. Comput. Phys..

[40]  Hong Qin,et al.  Variational symplectic algorithm for guiding center dynamics in the inner magnetosphere , 2011 .

[41]  Hong Qin,et al.  Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields. , 2008, Physical review letters.

[42]  R. B. White,et al.  Hamiltonian guiding center equations in toroidal magnetic configurations , 2003 .

[43]  M. Kraus Variational integrators in plasma physics , 2013, 1307.5665.

[44]  K. Kormann,et al.  GEMPIC: geometric electromagnetic particle-in-cell methods , 2016, Journal of Plasma Physics.

[45]  Jian Liu,et al.  Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov–Maxwell equations , 2015, 1503.08334.

[46]  T. Northrop Adiabatic charged‐particle motion , 1963 .

[47]  Hong Qin,et al.  Variational symplectic algorithm for guiding center dynamics and its application in tokamak geometry , 2009 .

[48]  John R. Cary,et al.  Hamiltonian theory of guiding-center motion , 2009 .

[49]  John C. Adams,et al.  An Attempt to Test the Theories of Capillary Action: By Comparing the Theoretical and Measured Forms of Drops of Fluid , 2007 .

[50]  Hong Qin,et al.  High order volume-preserving algorithms for relativistic charged particles in general electromagnetic fields , 2016, 1606.07672.

[51]  G. Dahlquist Convergence and stability in the numerical integration of ordinary differential equations , 1956 .

[52]  A. Lichtenberg,et al.  Regular and Stochastic Motion , 1982 .

[53]  Numerically induced stochasticity , 1991 .