Degenerate Variational Integrators for Magnetic Field Line Flow and Guiding Center Trajectories
暂无分享,去创建一个
Hong Qin | C. Leland Ellison | William M. Tang | John M. Finn | Joshua W. Burby | Michael Kraus | H. Qin | M. Kraus | J. Burby | C. Ellison | W. Tang | J. Finn
[1] Bülent Karasözen,et al. Poisson integrators , 2004, Math. Comput. Model..
[2] J. Marsden,et al. Introduction to mechanics and symmetry , 1994 .
[3] P. Channell,et al. Integrators for Lie-Poisson or dynamical systems , 1991 .
[4] R. Ruth. A Can0nical Integrati0n Technique , 1983, IEEE Transactions on Nuclear Science.
[5] Hong Qin,et al. Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme , 2012, 1401.6723.
[6] J. Marsden,et al. Discrete mechanics and variational integrators , 2001, Acta Numerica.
[7] Ernst Hairer,et al. Backward error analysis for multistep methods , 1999, Numerische Mathematik.
[8] Bradley Allan Shadwick,et al. Variational formulation of macro-particle plasma simulation algorithms , 2014 .
[9] Jerrold E. Marsden,et al. Variational integrators for electric circuits , 2011, J. Comput. Phys..
[10] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[11] W. A. Cooper,et al. NBI fast ion confinement in the helical core of MAST hybrid-like plasmas , 2014 .
[12] Hong Qin,et al. Volume-preserving algorithms for charged particle dynamics , 2015, J. Comput. Phys..
[13] R. Budny,et al. A description of the full-particle-orbit-following SPIRAL code for simulating fast-ion experiments in tokamaks , 2013 .
[14] Tuomas Koskela,et al. Monte Carlo method and High Performance Computing for solving Fokker-Planck equation of minority plasma particles , 2015, 1510.06221.
[15] Melvin Leok,et al. Discrete Hamiltonian Variational Integrators , 2010, 1001.1408.
[16] Fernando Casas,et al. On the Numerical Integration of Ordinary Differential Equations by Processed Methods , 2004, SIAM J. Numer. Anal..
[17] Francisco Castejón-Magaña,et al. ISDEP: Integrator of stochastic differential equations for plasmas , 2012, Comput. Phys. Commun..
[18] J. Burby,et al. Toroidal regularization of the guiding center Lagrangian , 2017, 1709.02867.
[19] R. Ruth,et al. Fourth-order symplectic integration , 1990 .
[20] Simppa Äkäslompolo,et al. ASCOT: Solving the kinetic equation of minority particle species in tokamak plasmas , 2013, Comput. Phys. Commun..
[21] C. Scovel,et al. Symplectic integration of Hamiltonian systems , 1990 .
[22] G. Quispel,et al. Geometric integrators for ODEs , 2006 .
[23] M. S. Chance,et al. Hamiltonian guiding center drift orbit calculation for plasmas of arbitrary cross section , 1984 .
[24] H. Qin,et al. Gauge properties of the guiding center variational symplectic integrator , 2012, 1401.6725.
[25] J. W. Humberston. Classical mechanics , 1980, Nature.
[26] J. Marsden,et al. Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators , 1988 .
[27] M. Kraus. Projected Variational Integrators for Degenerate Lagrangian Systems , 2017, 1708.07356.
[28] J. M. Sanz-Serna,et al. Runge-kutta schemes for Hamiltonian systems , 1988 .
[29] T. Frankel. The geometry of physics : an introduction , 2004 .
[30] E. G. Evstatiev,et al. Variational formulation of particle algorithms for kinetic E&M plasma simulations , 2012, 2016 IEEE International Conference on Plasma Science (ICOPS).
[31] J. Cary,et al. Noncanonical Hamiltonian mechanics and its application to magnetic field line flow , 1983 .
[32] Robert G. Littlejohn,et al. Variational principles of guiding centre motion , 1983, Journal of Plasma Physics.
[33] C. Ellison. Development of Multistep and Degenerate Variational Integrators for Applications in Plasma Physics , 2016 .
[34] Yulei Wang,et al. The accurate particle tracer code , 2016, Comput. Phys. Commun..
[35] H. Yoshida. Construction of higher order symplectic integrators , 1990 .
[36] L. Einkemmer. Structure preserving numerical methods for the Vlasov equation , 2016, 1604.02616.
[37] William Tang,et al. Development of variational guiding center algorithms for parallel calculations in experimental magnetic equilibria , 2015 .
[38] Mathieu Desbrun,et al. Variational Partitioned Runge–Kutta Methods for Lagrangians Linear in Velocities , 2014, Mathematics.
[39] Shuangxi Zhang,et al. Comment on "Symplectic integration of magnetic systems" by Stephen D. Webb [J. Comput. Phys. 270(2014) 570-576] , 2015, J. Comput. Phys..
[40] Hong Qin,et al. Variational symplectic algorithm for guiding center dynamics in the inner magnetosphere , 2011 .
[41] Hong Qin,et al. Variational symplectic integrator for long-time simulations of the guiding-center motion of charged particles in general magnetic fields. , 2008, Physical review letters.
[42] R. B. White,et al. Hamiltonian guiding center equations in toroidal magnetic configurations , 2003 .
[43] M. Kraus. Variational integrators in plasma physics , 2013, 1307.5665.
[44] K. Kormann,et al. GEMPIC: geometric electromagnetic particle-in-cell methods , 2016, Journal of Plasma Physics.
[45] Jian Liu,et al. Canonical symplectic particle-in-cell method for long-term large-scale simulations of the Vlasov–Maxwell equations , 2015, 1503.08334.
[46] T. Northrop. Adiabatic charged‐particle motion , 1963 .
[47] Hong Qin,et al. Variational symplectic algorithm for guiding center dynamics and its application in tokamak geometry , 2009 .
[48] John R. Cary,et al. Hamiltonian theory of guiding-center motion , 2009 .
[49] John C. Adams,et al. An Attempt to Test the Theories of Capillary Action: By Comparing the Theoretical and Measured Forms of Drops of Fluid , 2007 .
[50] Hong Qin,et al. High order volume-preserving algorithms for relativistic charged particles in general electromagnetic fields , 2016, 1606.07672.
[51] G. Dahlquist. Convergence and stability in the numerical integration of ordinary differential equations , 1956 .
[52] A. Lichtenberg,et al. Regular and Stochastic Motion , 1982 .
[53] Numerically induced stochasticity , 1991 .